1
|
Zhou XY, Fu B, Jin WD, Wang X, Wang KK, Wang M, She YB, Shen HM. Efficient and Selective Oxygenation of Cycloalkanes and Alkyl Aromatics with Oxygen through Synergistic Catalysis of Bimetallic Active Centers in Two-Dimensional Metal-Organic Frameworks Based on Metalloporphyrins. Biomimetics (Basel) 2023; 8:325. [PMID: 37504212 PMCID: PMC10807029 DOI: 10.3390/biomimetics8030325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/08/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
Confined catalytic realms and synergistic catalysis sites were constructed using bimetallic active centers in two-dimensional metal-organic frameworks (MOFs) to achieve highly selective oxygenation of cycloalkanes and alkyl aromatics with oxygen towards partly oxygenated products. Every necessary characterization was carried out for all the two-dimensional MOFs. The selective oxygenation of cycloalkanes and alkyl aromatics with oxygen was accomplished with exceptional catalytic performance using two-dimensional MOF Co-TCPPNi as a catalyst. Employing Co-TCPPNi as a catalyst, both the conversion and selectivity were improved for all the hydrocarbons investigated. Less disordered autoxidation at mild conditions, inhibited free-radical diffusion by confined catalytic realms, and synergistic C-H bond oxygenation catalyzed by second metal center Ni employing oxygenation intermediate R-OOH as oxidant were the factors for the satisfying result of Co-TCPPNi as a catalyst. When homogeneous metalloporphyrin T(4-COOCH3)PPCo was replaced by Co-TCPPNi, the conversion in cyclohexane oxygenation was enhanced from 4.4% to 5.6%, and the selectivity of partly oxygenated products increased from 85.4% to 92.9%. The synergistic catalytic mechanisms were studied using EPR research, and a catalysis model was obtained for the oxygenation of C-H bonds with O2. This research offered a novel and essential reference for both the efficient and selective oxygenation of C-H bonds and other key chemical reactions involving free radicals.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hai-Min Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; (X.-Y.Z.); (B.F.); (W.-D.J.); (X.W.); (K.-K.W.); (M.W.); (Y.-B.S.)
| |
Collapse
|
2
|
da Silva Junior RM, dos Santos EH, Nakagaki S. Metalloporphyrin-based multifunctional catalysts for one-pot assisted Tandem reaction. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
3
|
Oudi S, Oveisi AR, Daliran S, Khajeh M, Dhakshinamoorthy A, García H. A Porphyrin-Based Covalent Organic Framework as Metal-Free Visible-LED-Light Photocatalyst for One-Pot Tandem Benzyl Alcohol Oxidation/Knoevenagel Condensation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:558. [PMID: 36770519 PMCID: PMC9920377 DOI: 10.3390/nano13030558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/21/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
A porphyrin-based covalent organic framework (COF), namely Porph-UOZ-COF (UOZ stands for the University of Zabol), has been designed and prepared via the condensation reaction of 5,10,15,20-tetrakis-(3,4-dihydroxyphenyl)porphyrin (DHPP) with 1,4-benzenediboronic acid (DBBA), under the solvothermal condition. The solid was characterized by spectroscopic, microscopic, and powder X-ray diffraction techniques. The resultant multifunctional COF revealed an outstanding performance in catalyzing a one-pot tandem selective benzylic C-H photooxygenation/Knoevenagel condensation reaction in the absence of additives or metals under visible-LED-light irradiation. Notably, the catalytic activity of the COF was superior to individual organic counterparts and the COF was both stable and reusable for four consecutive runs. The present approach illustrates the potential of COFs as promising metal-free (photo) catalysts for the development of tandem reactions.
Collapse
Affiliation(s)
- Sara Oudi
- Department of Chemistry, Faculty of Sciences, University of Zabol, Zabol P.O. Box 98615-538, Iran
| | - Ali Reza Oveisi
- Department of Chemistry, Faculty of Sciences, University of Zabol, Zabol P.O. Box 98615-538, Iran
| | - Saba Daliran
- Department of Chemistry, Faculty of Sciences, University of Zabol, Zabol P.O. Box 98615-538, Iran
| | - Mostafa Khajeh
- Department of Chemistry, Faculty of Sciences, University of Zabol, Zabol P.O. Box 98615-538, Iran
| | - Amarajothi Dhakshinamoorthy
- Departamento de Quimica, Universitat Politècnica de València, Av. De los Naranjos s/n, 46022 Valencia, Spain
- School of Chemistry, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - Hermenegildo García
- Instituto Universitario de Tecnología Química, Consejo Superior de Investigaciones Científicas-Universitat Politecnica de Valencia, Av. De los Naranjos s/n, 46022 Valencia, Spain
| |
Collapse
|
4
|
Liu J, Wang W, Wang L, Jian P. Heterostructured V2O5/FeVO4 for enhanced liquid-phase epoxidation of cyclooctene. J Colloid Interface Sci 2023; 630:804-812. [DOI: 10.1016/j.jcis.2022.10.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/06/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022]
|
5
|
Cheng X, Guo L, Wang H, Gu J, Yang Y, Kirillova MV, Kirillov AM. Coordination Polymers from Biphenyl-Dicarboxylate Linkers: Synthesis, Structural Diversity, Interpenetration, and Catalytic Properties. Inorg Chem 2022; 61:12577-12590. [PMID: 35920738 PMCID: PMC9775469 DOI: 10.1021/acs.inorgchem.2c01488] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Indexed: 12/25/2022]
Abstract
The present work explores two biphenyl-dicarboxylate linkers, 3,3'-dihydroxy-(1,1'-biphenyl)-4,4'-dicarboxylic (H4L1) and 4,4'-dihydroxy-(1,1'-biphenyl)-3,3'-dicarboxylic (H4L2) acids, in hydrothermal generation of nine new compounds formulated as [Co2(μ2-H2L1)2(phen)2(H2O)4] (1), [Mn2(μ4-H2L1)2(phen)2]n·4nH2O (2), [Zn(μ2-H2L1)(2,2'-bipy)(H2O)]n (3), [Cd(μ2-H2L1) (2,2'-bipy)(H2O)]n (4), [Mn2(μ2-H2L1)(μ4-H2L1)(μ2-4,4'-bipy)2]n·4nH2O (5), [Zn(μ2-H2L1)(μ2-4,4'-bipy)]n (6), [Zn(μ2-H2L2)(phen)]n (7), [Cd(μ3-H2L2)(phen)]n (8), and [Cu(μ2-H2L2) (μ2-4,4'-bipy)(H2O)]n (9). These coordination polymers (CPs) were generated by reacting a metal(II) chloride, a H4L1 or H4L2 linker, and a crystallization mediator such as 2,2'-bipy (2,2'-bipyridine), 4,4'-bipy (4,4'-bipyridine), or phen (1,10-phenanthroline). The structural types of 1-9 range from molecular dimers (1) to one-dimensional (3, 4, 7) and two-dimensional (8, 9) CPs as well as three-dimensional metal-organic frameworks (2, 5, 6). Their structural, topological, and interpenetration features were underlined, including an identification of unique two- and fivefold 3D + 3D interpenetrated nets in 5 and 6. Phase purity, thermal and luminescence behavior, as well as catalytic activity of the synthesized products were investigated. Particularly, a Zn(II)-based CP 3 acts as an effective and recyclable heterogeneous catalyst for Henry reaction between a model substrate (4-nitrobenzaldehyde) and nitroethane to give β-nitro alcohol products. For this reaction, various parameters were optimized, followed by the investigation of the substrate scope. By reporting nine new compounds and their structural traits and functional properties, the present work further outspreads a family of CPs constructed from the biphenyl-dicarboxylate H4L1 and H4L2 linkers.
Collapse
Affiliation(s)
- Xiaoyan Cheng
- State
Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous
Metal Chemistry and Resources Utilization of Gansu Province, College
of Chemistry and Chemical Engineering, Lanzhou
University, Lanzhou 730000, People’s Republic
of China
| | - Lirong Guo
- State
Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous
Metal Chemistry and Resources Utilization of Gansu Province, College
of Chemistry and Chemical Engineering, Lanzhou
University, Lanzhou 730000, People’s Republic
of China
| | - Hongyu Wang
- State
Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous
Metal Chemistry and Resources Utilization of Gansu Province, College
of Chemistry and Chemical Engineering, Lanzhou
University, Lanzhou 730000, People’s Republic
of China
| | - Jinzhong Gu
- State
Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous
Metal Chemistry and Resources Utilization of Gansu Province, College
of Chemistry and Chemical Engineering, Lanzhou
University, Lanzhou 730000, People’s Republic
of China
| | - Ying Yang
- State
Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous
Metal Chemistry and Resources Utilization of Gansu Province, College
of Chemistry and Chemical Engineering, Lanzhou
University, Lanzhou 730000, People’s Republic
of China
| | - Marina V. Kirillova
- Centro
de Química Estrutural, Institute of Molecular Sciences, Departamento
de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisbon 1049-001, Portugal
| | - Alexander M. Kirillov
- Centro
de Química Estrutural, Institute of Molecular Sciences, Departamento
de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisbon 1049-001, Portugal
| |
Collapse
|
6
|
Chen S, Li Y, Wang Z, Jin Y, Liu R, Li X. Poly(ionic liquid)s hollow spheres nanoreactor for enhanced cyclohexane catalytic oxidation. J Catal 2022. [DOI: 10.1016/j.jcat.2022.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Antonangelo AR, Hawkins N, Carta M. Polymers of intrinsic microporosity (PIMs) for catalysis: a perspective. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2021.100766] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Aggarwal A, Bhupathiraju NVSDK, Farley C, Singh S. Applications of Fluorous Porphyrinoids: An Update †. Photochem Photobiol 2021; 97:1241-1265. [PMID: 34343350 DOI: 10.1111/php.13499] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/30/2021] [Indexed: 12/11/2022]
Abstract
Porphyrins and related macrocycles have been studied broadly for their applications in medicine and materials because of their tunable physicochemical, optoelectronic and magnetic properties. In this review article, we focused on the applications of fluorinated porphyrinoids and their supramolecular systems and summarized the reports published on these chromophores in the past 5-6 years. The commercially available fluorinated porphyrinoids: meso-perfluorophenylporphyrin (TPPF20 ) perfluorophthalocyanine (PcF16 ) and meso-perfluorophenylcorrole (CorF15 ) have increased photo and oxidative stability due to the presence of fluoro groups. Because of their tunable properties and robustness toward oxidative damage these porphyrinoid-based chromophores continue to gain attention of researchers developing advanced functional materials for applications such as sensors, photonic devices, component for solar cells, biomedical imaging, theranostics and catalysts.
Collapse
Affiliation(s)
- Amit Aggarwal
- Department of Natural Sciences, LaGuardia Community College of the City University of New York, Long Island City, NY
| | - N V S Dinesh K Bhupathiraju
- Department of Chemistry and Biochemistry, Hunter College of the City University of New York (CUNY), New York, NY
| | - Christopher Farley
- Department of Natural Sciences, LaGuardia Community College of the City University of New York, Long Island City, NY
| | - Sunaina Singh
- Department of Natural Sciences, LaGuardia Community College of the City University of New York, Long Island City, NY
| |
Collapse
|
9
|
Castro KADF, Westrup KCM, Silva S, Pereira PMR, Simões MMQ, Neves MDGPMS, Cavaleiro JAS, Tomé JPC, Nakagaki S. Iron(III) Complexation with Galactodendritic Porphyrin Species and Hydrocarbons’ Oxidative Transformations. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kelly A. D. F. Castro
- Laboratório de Química Bioinorgânica e Catálise Universidade Federal do Paraná (UFPR) CP 19061, CEP 81531-980 Curitiba Paraná Brazil
- LAQV-REQUIMTE Department of Chemistry University of Aveiro 3810-193 Aveiro Portugal
| | - Kátia C. M. Westrup
- Laboratório de Química Bioinorgânica e Catálise Universidade Federal do Paraná (UFPR) CP 19061, CEP 81531-980 Curitiba Paraná Brazil
| | - Sandrina Silva
- LAQV-REQUIMTE Department of Chemistry University of Aveiro 3810-193 Aveiro Portugal
| | | | - Mário M. Q. Simões
- LAQV-REQUIMTE Department of Chemistry University of Aveiro 3810-193 Aveiro Portugal
| | | | - José A. S. Cavaleiro
- LAQV-REQUIMTE Department of Chemistry University of Aveiro 3810-193 Aveiro Portugal
| | - João P. C. Tomé
- Centro de Química Estrutural Instituto Superior Técnico Departamento de Química Universidade de Lisboa Av. Rovisco Pais 1049-001 Lisboa Portugal
| | - Shirley Nakagaki
- Laboratório de Química Bioinorgânica e Catálise Universidade Federal do Paraná (UFPR) CP 19061, CEP 81531-980 Curitiba Paraná Brazil
| |
Collapse
|
10
|
Bolzon LB, Bindeiro AKDS, de Oliveira Souza ALM, Zanatta LD, de Paula R, Cerqueira BC, dos Santos JS. Rhodamine B oxidation promoted by P450-bioinspired Jacobsen catalysts/cellulose systems. RSC Adv 2021; 11:33823-33834. [PMID: 35497525 PMCID: PMC9042282 DOI: 10.1039/d1ra04915a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/19/2021] [Indexed: 11/21/2022] Open
Abstract
P450-bioinspired Jacobsen/Cell(NEt2) catalysts have been applied in RhB dye oxidation, which is used illegally in food industries of some countries.
Collapse
Affiliation(s)
- Lucas Bomfim Bolzon
- Grupo de Pesquisa em Bioinorgânica e Catálise (GPBioCat), Departamento de Química Geral e Inorgânica, IQ-UFBA, R. Barão de Jeremoabo 147, Campus de Ondina, 40170-115 Salvador, BA, Brazil
| | - Anna Karolina dos Santos Bindeiro
- Grupo de Pesquisa em Bioinorgânica e Catálise (GPBioCat), Departamento de Química Geral e Inorgânica, IQ-UFBA, R. Barão de Jeremoabo 147, Campus de Ondina, 40170-115 Salvador, BA, Brazil
| | - Ana Luiza Marques de Oliveira Souza
- Grupo de Pesquisa em Bioinorgânica e Catálise (GPBioCat), Departamento de Química Geral e Inorgânica, IQ-UFBA, R. Barão de Jeremoabo 147, Campus de Ondina, 40170-115 Salvador, BA, Brazil
| | - Lucas Dimarô Zanatta
- Laboratório de Bioinorgânica, Departamento de Química, FFCLRP-USP, Av. Bandeirantes 3900, 14040-901, Ribeirão Preto, SP, Brazil
| | - Rodrigo de Paula
- Centro de Formação de Professores, UFRB, Av. Nestor de Melo Pita 535, Campus de Amargosa, 45300-000, Amargosa, BA, Brazil
- Programa de Pós-Graduação em Química Pura e Aplicada-POSQUIPA, Universidade Federal do Oeste da Bahia, Rua Bertioga, 892, Morada Real, 47810-059, Barreiras, BA, Brazil
| | - Bruna Costa Cerqueira
- Centro de Formação de Professores, UFRB, Av. Nestor de Melo Pita 535, Campus de Amargosa, 45300-000, Amargosa, BA, Brazil
| | - Joicy Santamalvina dos Santos
- Grupo de Pesquisa em Bioinorgânica e Catálise (GPBioCat), Departamento de Química Geral e Inorgânica, IQ-UFBA, R. Barão de Jeremoabo 147, Campus de Ondina, 40170-115 Salvador, BA, Brazil
| |
Collapse
|
11
|
Shen HM, Wang X, Guo AB, Zhang L, She YB. Catalytic oxidation of cycloalkanes by porphyrin cobalt(II) through efficient utilization of oxidation intermediates. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s1088424620500303] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The catalytic oxidation of cycloalkanes using molecular oxygen employing porphyrin cobalt(II) as catalyst was enhanced through use of cycloalkyl hydroperoxides, which are the primary intermediates in oxidation of cycloalkanes, as additional oxidants to further oxidize cycloalkanes in the presence of porphyrin copper(II), especially for cyclohexane, for which the selectivity was enhanced from 88.6 to 97.2% to the KA oil; at the same time, the conversion of cyclohexane was enhanced from 3.88 to 4.41%. The enhanced efficiency and selectivity were mainly attributed to the avoided autoxidation of cycloalkanes and efficient utilization of oxidation intermediate cycloalkyl hydroperoxides as additional oxidants instead of conventional thermal decomposition. In addition to cyclohexane, the protocol presented in this research is also very applicable in the oxidation of other cycloalkanes such as cyclooctane, cycloheptane and cyclopentane, and can serve as a applicable and efficient strategy to boost the conversion and selectivity simultaneously in oxidation of alkanes. This work also is a very important reference for the extensive application of metalloporphyrins in catalysis chemistry.
Collapse
Affiliation(s)
- Hai M. Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiong Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - A. Bing Guo
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Long Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuan B. She
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
12
|
Vijjamarri S, O’Denius TM, Yao B, Kubátová A, Du G. Highly Selective Hydroboration of Carbonyls by a Manganese Catalyst: Insight into the Reaction Mechanism. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00448] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Srikanth Vijjamarri
- Department of Chemistry, University of North Dakota, 151 Cornell Street Stop 9024, Grand Forks, North Dakota 58202, United States
| | - Timothy M. O’Denius
- Department of Chemistry, University of North Dakota, 151 Cornell Street Stop 9024, Grand Forks, North Dakota 58202, United States
| | - Bin Yao
- Department of Chemistry, University of North Dakota, 151 Cornell Street Stop 9024, Grand Forks, North Dakota 58202, United States
| | - Alena Kubátová
- Department of Chemistry, University of North Dakota, 151 Cornell Street Stop 9024, Grand Forks, North Dakota 58202, United States
| | - Guodong Du
- Department of Chemistry, University of North Dakota, 151 Cornell Street Stop 9024, Grand Forks, North Dakota 58202, United States
| |
Collapse
|
13
|
Ruan Y, Gao B. Synthesis of zinc-porphyrin based multi-arm star Poly(N-isopropylacrylamide) and the effect of topology on photocatalytic performance. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Vailati AF, Huelsmann RD, Martendal E, Bortoluzzi AJ, Xavier FR, Peralta RA. Multivariate analysis applied to oxidation of cyclohexane and benzyl alcohol promoted by mononuclear iron and copper complexes. NEW J CHEM 2020. [DOI: 10.1039/c9nj05534g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The iron complex converted higher amounts of substrates while the copper complex presented higher selectivity toward selected products.
Collapse
Affiliation(s)
- Andrei F. Vailati
- Departamento de Química
- Universidade Federal de Santa Catarina
- Florianópolis – SC
- Brazil
| | - Ricardo D. Huelsmann
- Departamento de Química
- Universidade Federal de Santa Catarina
- Florianópolis – SC
- Brazil
| | - Edmar Martendal
- Departamento de Química
- Universidade do Estado de Santa Catarina
- Joinville – SC
- Brazil
| | | | - Fernando R. Xavier
- Departamento de Química
- Universidade do Estado de Santa Catarina
- Joinville – SC
- Brazil
| | - Rosely A. Peralta
- Departamento de Química
- Universidade Federal de Santa Catarina
- Florianópolis – SC
- Brazil
| |
Collapse
|
15
|
Shen HM, Zhang L, Deng JH, Sun J, She YB. Enhanced catalytic performance of porphyrin cobalt(II) in the solvent-free oxidation of cycloalkanes (C5~C8) with molecular oxygen promoted by porphyrin zinc(II). CATAL COMMUN 2019. [DOI: 10.1016/j.catcom.2019.105809] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
16
|
Second-Generation Manganese(III) Porphyrins Bearing 3,5-Dichloropyridyl Units: Innovative Homogeneous and Heterogeneous Catalysts for the Epoxidation of Alkenes. Catalysts 2019. [DOI: 10.3390/catal9110967] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The synthesis, characterisation and homogeneous catalytic oxidation results of two manganese(III) porphyrins of the so-called second-generation of metalloporphyrin catalysts, containing one or four 3,5-dichloropyridyl substituents at the meso positions are reported for the first time. The catalytic efficiency of these novel manganese(III) porphyrins was evaluated in the oxidation of cyclooctene and styrene using aqueous hydrogen peroxide as the oxidant, under homogeneous conditions. High conversions were obtained in the presence of both catalysts, obtaining the corresponding epoxide as the major product. The asymmetric metalloporphyrin, chloro[5,10,15-tris(2,6-dichlorophenyl)-20-(3,5-dichloropyridin-4-yl)porphyrinate]manganese(III), CAT-4, evidences a similar activity to that obtained with the well-known and highly efficient second-generation metalloporphyrin catalyst, chloro[5,10,15,20-tetrakis(2,6-dichlorophenyl)porphyrinate]manganese(III), CAT-2. CAT-4 was covalently attached onto Merrifield resin and 3-bromopropylsilica supports. The solid materials obtained were characterized by several techniques including diffuse reflectance, UV—VIS spectrophotometry, SEM and XPS. The catalytic results for the oxidation of cyclooctene and styrene using the immobilized catalysts are also presented. The Merrifield-supported catalyst showed to be very efficient, leading to five catalytic cycles in the oxidation of cyclooctene, using tert-butyl hydroperoxide as the oxidant.
Collapse
|
17
|
Detection of reactive intermediates in manganese(III) porphyrin catalyzed oxidation reaction using 2,4,6-tri-tert-butylphenol as probe substrate. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.119004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Tetracopper(II) Cores Driven by an Unexplored Trifunctional Aminoalcohol Sulfonic Acid for Mild Catalytic C–H Functionalization of Alkanes. Catalysts 2019. [DOI: 10.3390/catal9040321] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Three new tetracopper(II) coordination compounds were easily generated from Cu(NO3)2, a trifunctional aminoalcohol sulfonic acid (H3bes, N,N-bis(2-hydroxyethyl)-2-aminoethanesulfonic acid) as a principal building block, and a benzene carboxylic acid as a supporting ligand (i.e., benzoic (Hba), 4-hydroxybenzoic (Hfba), or 3-hydroxybenzoic (Hthba) acid). The obtained microcrystalline products, [Cu4(µ-Hbes)3(µ-H2bes)(µ-L)]·2H2O (L = ba− (1), fhba− (2), and thba− (3)), were fully characterized by FTIR (Fourier-transform infrared spectroscopy), elemental analysis, ESI-MS (Electrospray Ionisation Mass Spectrometry), and single-crystal X-ray diffraction methods. Compounds 1–3 were applied as effective homogeneous catalysts in the oxidative C−H functionalization of alkanes (cycloalkanes and propane). Two different model reactions were explored: (1) mild oxidation of alkanes with hydrogen peroxide to give alcohols and ketones, and (2) mild carboxylation of alkanes with carbon monoxide, water, and potassium peroxodisulfate to give carboxylic acids. For these reactions, effects of different parameters, as well as mechanistic and selectivity characteristics, were studied.
Collapse
|