1
|
Wang O, Kong J, Xue Z, An B, Xu J, Wang X. Tailoring the Ni-O Microenvironment in Amorphous-Dominated Highly Active and Stable Zn/NiO for Hydrogen Sulfide Detection. ACS Sens 2024; 9:3233-3243. [PMID: 38832488 DOI: 10.1021/acssensors.4c00589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Amorphous metal oxide semiconductor (MOS) materials are endowed with great promise to modulate electronic structures for gas-sensing performance improvement. However, the elevated-temperature requirement of gas sensors severely impedes the application of amorphous materials due to their low thermal stability. Here, a cationic-assisted strategy to tailor the Ni-O microenvironment in an amorphous-dominated Zn/NiO heterogeneous structure with high thermal stability was developed. It was found that 6 mol % Zn incorporation into amorphous NiO can effectively preserve the amorphous-dominated NiO phase even at high temperature. After calcination, the amorphous oxide can only be converted to crystals partly thus leading to the formation of amorphous/crystalline compounds, and the content of the amorphous phase can be adjusted by changing the calcination temperature. This amorphous/crystalline configuration can induce more electron transfer from Ni to Zn species, leading to the formation of active Niδ+ (δ>2) centers. Ex situ XPS and in situ Raman spectroscopy studies proved that the generated Niδ+ species pronouncedly promote the electron transfer during the H2S adsorption process. The amorphous/crystalline-6 mol % Zn/NiO sensor exhibits exceptional hydrogen sulfide response (2 ppm, 3.23), outstanding repeatability (as long as 5 weeks), and low limit of detection (as low as 50 ppb), surpassing most reported nickel-based gas sensors such as the crystal nickel oxide prepared in this work. The response and detection limit of the latter is only (2 ppm, 1.89) and (0.05 ppm) respectively. Our work thus opens up more opportunities for fundamental understanding and modulating of highly active amorphous sensing materials.
Collapse
Affiliation(s)
- Ou Wang
- NEST Lab, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Jiawei Kong
- NEST Lab, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Zhengang Xue
- NEST Lab, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - BaoLi An
- NEST Lab, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Jiaqiang Xu
- NEST Lab, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Xiaohong Wang
- NEST Lab, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| |
Collapse
|
2
|
Wu D, Meng Z, Bao Z, Deng M, Ou J, Chen Z. Experimental study on gas and particle emission characteristics of carbon black oxidation process in the presence of water and catalysts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165748. [PMID: 37495122 DOI: 10.1016/j.scitotenv.2023.165748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/10/2023] [Accepted: 07/21/2023] [Indexed: 07/28/2023]
Abstract
The study of oxidation characteristics of carbon black particle is the basis to investigate the regeneration process and characteristics of diesel particulate filter (DPF). Based on the fixed-bed test bench, the gas and particle emission characteristics of carbon black oxidation process in the presence of water are investigated under different temperatures, Printex-U (PU) masses, and catalysts. The experimental results show that the rise of temperature and PU mass increases the emissions of CO, CO2 and the total average particle number (PN). The oxidation efficiency (η) increases with temperature, but decreases with PU mass. The addition of catalysts promotes PU oxidation, and reduces CO emission. Due to the influence of particle diffusion, CeO2 has slightly lower efficiency than Pt/Al2O3 in the same ratio (1:1), but it is beneficial to significantly reduce particle emission, especially as the ratio increases (1:5). Water decreases CO and the η in PU oxidation, and the negative impact is gradually reduced after 3 % water concentration; However, the PN significantly increases, and expands the particle size range, particularly at high temperature and adding Pt/Al2O3 (from about 10 nm to 6- 30 nm, and a large number of particles with 30- 100 nm are produced). Additionally, the CO2/CO ratio of carbon black oxidation gradually increases with water concentration. Controlling DPF regeneration needs to strike a balance between the benefits on increasing oxidation efficiency and the potential negatives on particulate and harmful gas emission.
Collapse
Affiliation(s)
- Daigeng Wu
- Key Laboratory of Fluid and Power Machinery, Ministry of Education (Xihua University), Chengdu 610039, PR China; Vehicle Measurement, Control and Safety Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, PR China
| | - Zhongwei Meng
- Key Laboratory of Fluid and Power Machinery, Ministry of Education (Xihua University), Chengdu 610039, PR China; Vehicle Measurement, Control and Safety Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, PR China.
| | - Zhongqiang Bao
- Key Laboratory of Fluid and Power Machinery, Ministry of Education (Xihua University), Chengdu 610039, PR China; Vehicle Measurement, Control and Safety Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, PR China
| | - Meng Deng
- Key Laboratory of Fluid and Power Machinery, Ministry of Education (Xihua University), Chengdu 610039, PR China; Vehicle Measurement, Control and Safety Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, PR China
| | - Juan Ou
- Power Machinery and Vehicular Engineering Institute, Zhejiang University, Hangzhou 310027, PR China
| | - Zhou Chen
- Key Laboratory of Fluid and Power Machinery, Ministry of Education (Xihua University), Chengdu 610039, PR China; Vehicle Measurement, Control and Safety Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, PR China
| |
Collapse
|
3
|
Sun F, Song J, Wen H, Cao X, Zhao F, Qin J, Mao W, Tang X, Dong L, Long Y. Ce 4+/Ce 3+ Redox Effect-Promoted CdS/CeO 2 Heterojunction Photocatalyst for the Atom Economic Synthesis of Imines under Visible Light. Inorg Chem 2023; 62:17961-17971. [PMID: 37857562 DOI: 10.1021/acs.inorgchem.3c02907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
The employment of stoichiometric alcohols and amines for imine synthesis under mild and green reaction conditions is still a challenge in the field. In this work, based on our research foundation in the thermocatalytic synthesis of imines over ceria, a CdS/CeO2 heterojunction photocatalyst was constructed and successfully realized the atom-economic synthesis of imines under visible light without additives at room temperature. Mechanistic experiments and corresponding characterizations indicated that the CdS/CeO2 heterojunction can improve the separation efficiency of photogenerated carriers, which can be further enhanced by the Ce4+/Ce3+ redox pair by rapidly combining photogenerated e-. The in situ-reduced Ce3+ can better activate O2 to form Ce-O-O·, which, together with h+, efficiently accelerates alcohol oxidation, which is the rate-determined step for the synthesis of imines via oxidative coupling reaction of alcohol and amine. In addition, our photocatalyst exhibited fairly decent reusability and substrate universality. This work solves problems of using base additives and excess amine or alcohol in the reported photocatalytic systems and provides new insight for designing CeO2-based photocatalytic oxidation catalysts.
Collapse
Affiliation(s)
- Fangkun Sun
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jie Song
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - He Wen
- Lanzhou Petrochemical Research Center, Petrochemical Research Institute, PetroChina, Lanzhou 730060, P. R. China
| | - Xiao Cao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Feng Zhao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jiaheng Qin
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Weiwen Mao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xiaoqi Tang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Linkun Dong
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yu Long
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
4
|
Wan Y, Wang H, Liu J, Liu X, Song X, Zhou W, Zhang J, Huo P. Enhanced degradation of polyethylene terephthalate plastics by CdS/CeO 2 heterojunction photocatalyst activated peroxymonosulfate. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131375. [PMID: 37030225 DOI: 10.1016/j.jhazmat.2023.131375] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/24/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Waste plastics have posed enormous to the environment, but their recycling, especially polyethylene terephthalate plastics, was still a huge challenge. Here, CdS/CeO2 was used as the photocatalyst to promote the degradation of PET-12 plastics by activating peroxymonosulfate (PMS) synergistic photocatalytic system. The results showed that 10 % CdS/CeO2 had the best performance under the illumination condition, and the weight loss rate of PET-12 could reach 93.92 % after adding 3 mM PMS. The effects of important parameters (PMS dose and co-existing anions) on PET-12 degradation were systematically studied, and the excellent performance of the photocatalytic-activated PMS system was verified by comparison experiments. SO4•- contributed the most to the degradation performance of PET-12 plastics, which was demonstrated by electron paramagnetic resonance (EPR) and free radical quenching experiments. Furthermore, the results of GC showed that the gas products including CO, and CH4. This indicated that the mineralized products could be further reduced to hydrocarbon fuel under the action of the photocatalyst. This job supplied a new idea for the photocatalytic treatment of waste microplastics in the water, which will help recycle waste plastics and recycle carbon resources.
Collapse
Affiliation(s)
- Yang Wan
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Huijie Wang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jiejing Liu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xin Liu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xianghai Song
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Weiqiang Zhou
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jisheng Zhang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Pengewei Huo
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
5
|
Li M, Li W, Yang Y, Yu D, Lin J, Wan R, Zhu H. Remarkably efficient Pt/CeO 2-Al 2O 3 catalyst for catalytic hydrodeiodination of monoiodoacetic acid: Synergistic effect of Al 2O 3 and CeO 2. CHEMOSPHERE 2023; 327:138515. [PMID: 36972872 DOI: 10.1016/j.chemosphere.2023.138515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 06/18/2023]
Abstract
Monoiodoacetic acid (MIAA) is one of the highly toxic halogenated disinfection by-products, which is formed during water disinfection processes. Catalytic hydrogenation with supported noble metal catalyst is a green and effective technique for the transformation of halogenated pollutant, but its activity still needs to be identified. In this study, Pt nanoparticles were supported on CeO2 modified γ-Al2O3 (Pt/CeO2-Al2O3) by chemical deposition method and the synergistic effect of Al2O3 and CeO2 on catalytic hydrodeiodination (HDI) of MIAA was systematically studied. Characterizations revealed that Pt dispersion could be improved by the introduced CeO2 through the formation of Ce-O-Pt bond and MIAA adsorption could be facilitated by high Zeta potential of Al2O3 component. Furthermore, optimal Ptn+/Pt0 could be obtained by adjusting CeO2 deposition amount on Al2O3, which could effectively facilitate the activation of C-I bond. Therefore, Pt/CeO2-Al2O3 exhibited remarkable catalytic activities and TOF values compared with those of Pt/CeO2 and Pt/Al2O3. Through detailed kinetic experiments and characterization, the extraordinary catalytic performance of Pt/CeO2-Al2O3 can be attributed to the abundant Pt sites as well as the synergistic effect between CeO2 and Al2O3.
Collapse
Affiliation(s)
- Minghui Li
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, PR China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, 210023, PR China
| | - Wen Li
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, PR China
| | - Yaning Yang
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, PR China
| | - Dailiang Yu
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, PR China
| | - Jingling Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, 210023, PR China
| | - Rui Wan
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, PR China
| | - Hongjie Zhu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, PR China.
| |
Collapse
|
6
|
Zhou F, Xiao Y, Guo M, Wang S, Qiu R, Morel JL, Simonnot MO, Zhang WX, Zhang W, Tang YT. Insights into the Selective Transformation of Ceria Sulfation and Iron/Manganese Mineralization for Enhancing the Selective Recovery of Rare Earth Elements. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3357-3368. [PMID: 36790364 DOI: 10.1021/acs.est.2c08395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
To cope with the urgent and unprecedented demands for rare earth elements (REEs) in sophisticated industries, increased attention has been paid to REE recovery from recycled streams. However, the similar geochemical behaviors of REEs and transition metals often result in poor separation performance due to nonselectivity. Here, a unique approach based on the selective transformation between ceria sulfation and iron/manganese mineralization was proposed, leading to the enhancement of the selective separation of REEs. The mechanism of the selective transformation of minerals could be ascribed to the distinct geochemical and metallurgical properties of ions, resulting in different combinations of cations and anions. According to hard-soft acid-base (HSAB) theory, the strong Lewis acid of Ce(III) was inclined to combine with the hard base of sulfates (SO42-), while the borderline acid of Fe(II)/Mn(II) prefers to interact with oxygen ions (O2-). Both in situ characterization and density functional theory (DFT) calculation further revealed that such selective transformation might trigger by the generation of an oxygen vacancy on the surface of CeO2, leading to the formation of Ce2(SO4)3 and Fe/Mn spinel. Although the electron density difference of the configurations (CeO2-x-SO4, Fe2O3-x-SO4, and MnO2-x-SO4) shared a similar direction of the electron transfer from the metals to the sulfate-based oxygen, the higher electron depletion of Ce (QCe = -1.91 e) than Fe (QFe = -1.66 e) and Mn (QMn = -1.64 e) indicated the higher stability in the Ce-O-S complex, resulting in the larger adsorption energy of CeO2-x-SO4 (-6.88 eV) compared with Fe2O3-x-SO4 (-3.10 eV) and MnO2-x-SO4 (-2.49 eV). This research provided new insights into the selective transformation of REEs and transition metals in pyrometallurgy and thus offered a new approach for the selective recovery of REEs from secondary resources.
Collapse
Affiliation(s)
- Fengping Zhou
- Guangdong Provincial Key Laboratory of Environmental Pollution and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Ye Xiao
- Guangdong Provincial Key Laboratory of Environmental Pollution and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, P. R. China
| | - Meina Guo
- Guangdong Provincial Key Laboratory of Environmental Pollution and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Shizhong Wang
- Guangdong Provincial Key Laboratory of Environmental Pollution and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, P. R. China
| | - Rongliang Qiu
- Guangdong Provincial Key Laboratory of Environmental Pollution and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, P. R. China
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, P. R. China
| | | | | | - Wei-Xian Zhang
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, P. R. China
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Weihua Zhang
- Guangdong Provincial Key Laboratory of Environmental Pollution and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Shenzhen Research Institute, Sun Yat-sen University, Shenzhen 518057, P. R. China
| | - Ye-Tao Tang
- Guangdong Provincial Key Laboratory of Environmental Pollution and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, P. R. China
| |
Collapse
|
7
|
Li J, Hu R, Liu W, Gao D, Zhao H, Li C, Jiang X, Chen G. Interfacial Reaction-Directed Green Synthesis of CeO 2-MnO 2 Catalysts for Imine Production through Oxidative Coupling of Alcohols and Amines. Inorg Chem 2023; 62:3692-3702. [PMID: 36764007 DOI: 10.1021/acs.inorgchem.3c00095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Direct oxidative coupling of alcohols with amines over cheap but efficient catalysts is a promising choice for imine formation. In this study, porous CeO2-MnO2 binary oxides were prepared via an interfacial reaction between Ce2(SO4)3 and KMnO4 at room temperature without any additives. The as-prepared porous CeO2-MnO2 catalyst has a higher fraction of Ce3+, Mn3+, and Mn4+ and contains larger surface area and more oxygen vacancies. During the oxidative coupling reaction of alcohol with amine to imine, the as-obtained CeO2-MnO2 catalyst is motivated by the above encouraging characteristics and exhibits superior catalytic activity (98% conversion and 97% selectivity) and can also work effectively under a wide scope of temperatures and substrates. The in-depth in situ DRIFTS and density functional theory (DFT) results demonstrate that there is a strong interaction between CeO2 and MnO2 in the CeO2-MnO2 catalyst, exhibiting especially a positive synergistic effect in the direct coupling of alcohol and amine reaction.
Collapse
Affiliation(s)
- Jingwen Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022 P. R. China
| | - Riming Hu
- Institute for Smart Materials & Engineering, University of Jinan, Jinan, Shandong 250022 P. R. China
| | - Wei Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan, Shandong 250022 P. R. China
| | - Daowei Gao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022 P. R. China
| | - Huaiqing Zhao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022 P. R. China
| | - Chunsheng Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022 P. R. China
| | - Xuchuan Jiang
- Institute for Smart Materials & Engineering, University of Jinan, Jinan, Shandong 250022 P. R. China.,School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022 P. R. China
| | - Guozhu Chen
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022 P. R. China
| |
Collapse
|
8
|
Wang B, Luo Y, Chu G, Zhao Y, Duan X, Chen J. Optimizing the Pt‐FeO
x
Interaction over Atomic Pt/FeO
x
/CeO
2
Catalysts for Improved CO Oxidation Activity. CHEM-ING-TECH 2022. [DOI: 10.1002/cite.202200104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Bao‐Ju Wang
- Beijing University of Chemical Technology State Key Laboratory of Organic-Inorganic Composites 100029 Beijing China
- Beijing University of Chemical Technology Research Center of the Ministry of Education for High Gravity Engineering and Technology 100029 Beijing China
| | - Yong Luo
- Beijing University of Chemical Technology State Key Laboratory of Organic-Inorganic Composites 100029 Beijing China
- Beijing University of Chemical Technology Research Center of the Ministry of Education for High Gravity Engineering and Technology 100029 Beijing China
| | - Guang‐Wen Chu
- Beijing University of Chemical Technology State Key Laboratory of Organic-Inorganic Composites 100029 Beijing China
- Beijing University of Chemical Technology Research Center of the Ministry of Education for High Gravity Engineering and Technology 100029 Beijing China
| | - Yufei Zhao
- Beijing University of Chemical Technology State Key Laboratory of Chemical Resource Engineering 100029 Beijing China
| | - Xue Duan
- Beijing University of Chemical Technology State Key Laboratory of Chemical Resource Engineering 100029 Beijing China
| | - Jian‐Feng Chen
- Beijing University of Chemical Technology State Key Laboratory of Organic-Inorganic Composites 100029 Beijing China
- Beijing University of Chemical Technology Research Center of the Ministry of Education for High Gravity Engineering and Technology 100029 Beijing China
| |
Collapse
|
9
|
Wan T, Wang G, Guo Y, Fan X, Zhao J, Zhang X, Qin J, Fang J, Ma J, Long Y. Special direct route for efficient transfer hydrogenation of nitroarenes at room temperature by monatomic Zr tuned α-Fe2O3. J Catal 2022. [DOI: 10.1016/j.jcat.2022.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
10
|
Zhang X, Zhao J, Che C, Qin J, Wan T, Sun F, Ma J, Long Y. Uniformly microporous diatomite supported Ni0/2+ catalyzed controllable selective reductive amination of benzaldehydes to primary amines, secondary imines and secondary amines. J Catal 2022. [DOI: 10.1016/j.jcat.2022.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Dou Y, Zhang Y, Lin C, Han R, Wang Y, Wu D, Zheng J, Lu C, Tang L, He Y. pH-responsive theranostic nanoplatform of ferrite and ceria co-engineered nanoparticles for anti-inflammatory. Front Bioeng Biotechnol 2022; 10:983677. [PMID: 36159657 PMCID: PMC9500451 DOI: 10.3389/fbioe.2022.983677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/17/2022] [Indexed: 11/19/2022] Open
Abstract
Multiple component integration to achieve both therapy and diagnosis in a single theranostic nanosystem has aroused great research interest in the medical investigator. This study aimed to construct a novel theranostic nanoplatform ferrite and ceria co-engineered mesoporous silica nanoparticles (Fe/Ce-MSN) antioxidant agent though a facile metal Fe/Ce-codoping approach in the MSN framework. The resulted Fe3+-incorporated ceria-based MSN nanoparticles possessing a higher Ce3+-to-Ce4+ ratio than those revealed by ceria-only nanoparticles. The as-prepared Fe/Ce-MSN nanoparticles exhibited an excellent efficiency in scavenging reactive oxygen species (ROS), which is attributed to improving the superoxide dismutase (SOD) mimetics activity by increasing Ce3+ content and maintaining a higher activity of catalase (CAT) mimetics via including ferrite ion in nanoparticles. The fast Fe/Ce-MSN biodegradation, which is sensitive to the mild acidic microenvironment of inflammation, can accelerate Fe/Ce ion release, and the freed Fe ions enhanced T2-weighted magnetic resonance imaging in the inflammation site. PEGylated Fe/Ce-MSN nanoparticles in vitro cell models significantly attenuated ROS-induced inflammation, oxidative stress, and apoptosis in macrophages by scavenging overproduced intracellular ROS. More importantly, Fe/Ce-MSN-PEG NPs exhibited significant anti-inflammatory effects by inhibiting lipopolysaccharide (LPS)-induced expression of tumor necrosis factor-α (TNF-α) and interleukin-1 beta (IL-1β) levels in vitro. Additionally, it can promote the macrophages polarization of pro-inflammatory M1 phenotype towards an anti-inflammatory M2 phenotype. Thus, the novel pH-responsive theranostic nanoplatform shows great promise for inflammation and oxidative stress-associated disease treatment.
Collapse
Affiliation(s)
- Yuanyao Dou
- Department of Respiratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Yimin Zhang
- Department of Respiratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Caiyu Lin
- Department of Respiratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Rui Han
- Department of Respiratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Yubo Wang
- Department of Respiratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Di Wu
- Department of Respiratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Jie Zheng
- Department of Respiratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Conghua Lu
- Department of Respiratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- *Correspondence: Liling Tang, ; Yong He,
| | - Yong He
- Department of Respiratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
- *Correspondence: Liling Tang, ; Yong He,
| |
Collapse
|
12
|
More GS, Kushwaha N, Bal R, Srivastava R. Thermal and photocatalytic cascade one-pot synthesis of secondary amine using multifunctional Pd decorated MOF-derived CeO2. J Colloid Interface Sci 2022; 619:14-27. [DOI: 10.1016/j.jcis.2022.03.093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 02/07/2023]
|
13
|
CePO4/CeO2 heterostructure and enzymatic action of D-Fe2O3 co-amplify luminol-based electrochemiluminescence immunosensor for NSE detection. Biosens Bioelectron 2022; 214:114516. [DOI: 10.1016/j.bios.2022.114516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/22/2022] [Accepted: 06/25/2022] [Indexed: 11/22/2022]
|
14
|
Chang X, Ding H, Yang J. CeO2 Structure Adjustment by H2O via the Microwave–Ultrasonic Method and Its Application in Imine Catalysis. Front Chem 2022; 10:916092. [PMID: 35711956 PMCID: PMC9194526 DOI: 10.3389/fchem.2022.916092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 04/25/2022] [Indexed: 11/18/2022] Open
Abstract
CeO2 with fusiform structures were prepared by the combined microwave–ultrasonic method, and their morphologies and surface structure were changed by simply adding different amounts of H2O (1–5 ml) to the precursor system. The addition of H2O changed the PVP micelle structure and the surface state, resulting in CeO2 with a different specific surface area (64–111 m2 g−1) and Ce3+ defects (16.5%–28.1%). The sample with 2 ml H2O exhibited a high surface area (111.3 m2∙g−1) and relatively more surface defects (Ce3+%: 28.1%), resulting in excellent catalytic activity (4.34 mmol g−1 h−1).
Collapse
Affiliation(s)
- Xijiang Chang
- College of Science, Donghua University, Shanghai, China
| | - Huihui Ding
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, China
| | - Jingxia Yang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, China
- *Correspondence: Jingxia Yang, ,
| |
Collapse
|
15
|
Luo M, Qin T, Liu Q, Yang Z, Wang F, Li H. Novel Fe‐modified CeO2 nanorod catalyst for the dimethyl carbonate formation from CO2 and methanol. ChemCatChem 2022. [DOI: 10.1002/cctc.202200253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mingsheng Luo
- Beijing Institute of Petrochemical Technology Center for Applied Energy and Environmental Research 19 Qing-Yuan North Road 102600 Beijing CHINA
| | - Tong Qin
- Beijing Institute of Petrochemical Technology Chemical Engineering CHINA
| | - Qinglong Liu
- Beijing Institute of Petrochemical Technology Chemical Engineering CHINA
| | - Zhi Yang
- Beijing University of Technology Environment and Life Science CHINA
| | - Fengli Wang
- Beijing Institute of Petrochemical Technology Chemical Engineering CHINA
| | - Hong Li
- Beijing Institute of Petrochemical Technology Chemical Engineering CHINA
| |
Collapse
|
16
|
Wu C, Bu J, Wang W, Shen H, Cao Y, Zhang H. Imine Synthesis by Benzylamine Self-Coupling Catalyzed by Cerium-Doped MnO 2 under Mild Conditions. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chen Wu
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, PR China
- Xi’an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, PR China
| | - Jun Bu
- Xi’an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, PR China
| | - Wenbin Wang
- Xi’an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, PR China
| | - Haidong Shen
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, PR China
- Xi’an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, PR China
| | - Yueling Cao
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, PR China
- Xi’an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, PR China
- Chongqing Science and Technology Innovation Center of Northwestern Polytechnical University, Chongqing 401135, PR China
| | - Hepeng Zhang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, PR China
- Xi’an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, PR China
| |
Collapse
|
17
|
Xiong Y, Wang K, Ma L, Zhu J, Miao Y, Gong L, Mu X, Wan J, Li R. Bimetallic CoMoO
4
@C nanorod catalyzes one‐pot synthesis of benzimidazoles from benzyl alcohol and
o
‐phenylendiamine without alkali. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yucong Xiong
- College of Chemistry and Chemical Engineering Lanzhou University Lanzhou China
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) Lanzhou University Lanzhou China
| | - Kaizhi Wang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry Fudan University Shanghai China
| | - Lei Ma
- College of Chemistry and Chemical Engineering Lanzhou University Lanzhou China
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) Lanzhou University Lanzhou China
| | - Jiukang Zhu
- College of Chemistry and Chemical Engineering Lanzhou University Lanzhou China
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) Lanzhou University Lanzhou China
| | - Yujia Miao
- College of Chemistry and Chemical Engineering Lanzhou University Lanzhou China
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) Lanzhou University Lanzhou China
| | - Li Gong
- College of Chemistry and Chemical Engineering Lanzhou University Lanzhou China
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) Lanzhou University Lanzhou China
| | - Xiao Mu
- College of Chemistry and Chemical Engineering Lanzhou University Lanzhou China
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) Lanzhou University Lanzhou China
| | - Jiang Wan
- College of Chemistry and Chemical Engineering Lanzhou University Lanzhou China
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) Lanzhou University Lanzhou China
| | - Rong Li
- College of Chemistry and Chemical Engineering Lanzhou University Lanzhou China
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) Lanzhou University Lanzhou China
| |
Collapse
|
18
|
Gou G, Che C, Wen H, Qin J, Cao X, Han W, Zhang F, Long Y, Ma J. θ-Al2O3/FeO1.25 possessing a special ring complex of FeII---HO===FeIII for the efficient catalytic semi-hydrogenation of acetylene under front–end conditions. J Catal 2022. [DOI: 10.1016/j.jcat.2022.02.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
19
|
Niobium Oxide Supported on Cubic Spinel Cobalt Oxide as an Efficient Heterogeneous Catalyst for the Synthesis of Imines via Dehydrogenative Coupling of Amines and Alcohols. Catal Letters 2022. [DOI: 10.1007/s10562-022-03943-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Intriguing MnOx Decorated CeO2 Hollow Microspheres with Abundant Interfaces and Phase Boundaries Toward Styrene Oxidation. Catal Letters 2022. [DOI: 10.1007/s10562-022-03917-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Cao X, Dai Y, Qin J, Qi X, Qin Y, Chen M, Ma J, Long Y. Ce-Doped α-FeOOH as a High-Performance Catalyst for Atom-Economic Synthesis of Imines: Enhanced Oxygen-Activating Capacity and Acidic Property. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiao Cao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Yiwei Dai
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Jiaheng Qin
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Xin Qi
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Yao Qin
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Ming Chen
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Jiantai Ma
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Yu Long
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| |
Collapse
|
22
|
Wang BJ, Chu GW, Li YB, Duan XZ, Wang JX, Luo Y. Intensified micro-mixing effects on evolution of oxygen vacancies of CeO2-based catalysts for improved CO oxidation. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116814] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Huang X, Zhang K, Peng B, Wang G, Muhler M, Wang F. Ceria-Based Materials for Thermocatalytic and Photocatalytic Organic Synthesis. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02443] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xiubing Huang
- Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Beijing 10083, PR China
| | - Kaiyue Zhang
- Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Beijing 10083, PR China
| | - Baoxiang Peng
- Laboratory of Industrial Chemistry, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Nordrhein-Westfalen, Germany
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34−36, 45470 Mülheim an der Ruhr, Nordrhein-Westfalen, Germany
| | - Ge Wang
- Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Beijing 10083, PR China
| | - Martin Muhler
- Laboratory of Industrial Chemistry, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Nordrhein-Westfalen, Germany
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34−36, 45470 Mülheim an der Ruhr, Nordrhein-Westfalen, Germany
| | - Feng Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, PR China
| |
Collapse
|
24
|
Zhou Y, He J, Chen D, Li X, Wang Y, Xiao J, Li N, Xu Q, Li H, He J, Lu J. Flower-like Pt/Fe 2O 3–CeO 2 Catalysts for Highly Efficient Low-Temperature Catalytic Oxidation of Toluene. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Yuanbo Zhou
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren’ai Road, Suzhou 215123, P. R. China
| | - Jiaqin He
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren’ai Road, Suzhou 215123, P. R. China
| | - Dongyun Chen
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren’ai Road, Suzhou 215123, P. R. China
| | - Xunxun Li
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren’ai Road, Suzhou 215123, P. R. China
| | - Yaru Wang
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren’ai Road, Suzhou 215123, P. R. China
| | - Jun Xiao
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren’ai Road, Suzhou 215123, P. R. China
| | - Najun Li
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren’ai Road, Suzhou 215123, P. R. China
| | - Qingfeng Xu
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren’ai Road, Suzhou 215123, P. R. China
| | - Hua Li
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren’ai Road, Suzhou 215123, P. R. China
| | - Jinghui He
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren’ai Road, Suzhou 215123, P. R. China
| | - Jianmei Lu
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren’ai Road, Suzhou 215123, P. R. China
| |
Collapse
|
25
|
Wu S, Wang Y, Cao Q, Zhao Q, Fang W. Efficient Imine Formation by Oxidative Coupling at Low Temperature Catalyzed by High-Surface-Area Mesoporous CeO 2 with Exceptional Redox Property. Chemistry 2021; 27:3019-3028. [PMID: 33037678 DOI: 10.1002/chem.202003915] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/30/2020] [Indexed: 11/09/2022]
Abstract
High-surface-area mesoporous CeO2 (hsmCeO2 ) was prepared by a facile organic-template-induced homogeneous precipitation process and showed excellent catalytic activity in imine synthesis in the absence of base from primary alcohols and amines in air atmosphere at low temperature. For comparison, ordinary CeO2 and hsmCeO2 after different thermal treatments were also investigated. XRD, N2 physisorption, UV-Raman, H2 temperature-programmed reduction, O2 temperature-programmed desorption, EPR spectroscopy, and X-ray photoelectron spectroscopy were used to unravel the structural and redox properties. The hsmCeO2 calcined at 400 °C shows the highest specific surface area (158 m2 g-1 ), the highest fraction of surface coordinatively unsaturated Ce3+ ions (18.2 %), and the highest concentration of reactive oxygen vacancies (2.4×1015 spins g-1 ). In the model reaction of oxidative coupling of benzyl alcohol and aniline, such an exceptional redox property of the hsmCeO2 catalyst can boost benzylideneaniline formation (2.75 and 5.55 mmol g ceria - 1 h-1 based on >99 % yield at 60 and 80 °C, respectively) in air with no base additives. It can also work effectively at a temperature of 30 °C and in gram-scale synthesis. These are among the best results for all benchmark ceria catalysts in the literature. Moreover, the hsmCeO2 catalyst shows a wide scope towards primary alcohols and amines with good to excellent yield of imines. The influence of reaction parameters, the reusability of the catalyst, and the reaction mechanism were investigated.
Collapse
Affiliation(s)
- Shipeng Wu
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Functional Molecules Analysis and Biotransformation, Key Laboratory of Universities in Yunnan Province, Yunnan University, 2 North Cuihu Road, 650091, Kunming, P. R. China
| | - Yinghao Wang
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Functional Molecules Analysis and Biotransformation, Key Laboratory of Universities in Yunnan Province, Yunnan University, 2 North Cuihu Road, 650091, Kunming, P. R. China
| | - Qiue Cao
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Functional Molecules Analysis and Biotransformation, Key Laboratory of Universities in Yunnan Province, Yunnan University, 2 North Cuihu Road, 650091, Kunming, P. R. China.,National Demonstration Center for Experimental Chemistry and, Chemical Engineering Education, Yunnan University, 650091, Kunming, P. R. China
| | - Qihua Zhao
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Functional Molecules Analysis and Biotransformation, Key Laboratory of Universities in Yunnan Province, Yunnan University, 2 North Cuihu Road, 650091, Kunming, P. R. China
| | - Wenhao Fang
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Functional Molecules Analysis and Biotransformation, Key Laboratory of Universities in Yunnan Province, Yunnan University, 2 North Cuihu Road, 650091, Kunming, P. R. China.,National Demonstration Center for Experimental Chemistry and, Chemical Engineering Education, Yunnan University, 650091, Kunming, P. R. China
| |
Collapse
|
26
|
Gumus I, Ruzgar A, Karatas Y, Gülcan M. Highly efficient and selective one-pot tandem imine synthesis via amine-alcohol cross-coupling reaction catalysed by chromium-based MIL-101 supported Au nanoparticles. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2020.111363] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Wu S, Wei K, Fang W. Influence of Calcination on Mesoporous Mn
1
Zr
0.5
O
y
Solid Solution in Oxidative Coupling Catalysis for Benzylideneaniline Formation. ChemistrySelect 2021. [DOI: 10.1002/slct.202004509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shipeng Wu
- School of Chemical Science and Technology Key Laboratory of Medicinal Chemistry for Natural Resource – Ministry of Education Yunnan University 2 North Cuihu Road 650091 Kunming China
| | - Kun Wei
- School of Chemical Science and Technology Key Laboratory of Medicinal Chemistry for Natural Resource – Ministry of Education Yunnan University 2 North Cuihu Road 650091 Kunming China
| | - Wenhao Fang
- School of Chemical Science and Technology Key Laboratory of Medicinal Chemistry for Natural Resource – Ministry of Education Yunnan University 2 North Cuihu Road 650091 Kunming China
| |
Collapse
|
28
|
Zeng Y, Lyu P, Cai Y, Gao F, Zhuo O, Wu Q, Yang L, Wang X, Hu Z. Hierarchical Carbon Nanocages as Efficient Catalysts for Oxidative Coupling of Benzylamine to N-Benzylidene Benzylamine. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a20110527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Wu S, Zhang H, Cao Q, Zhao Q, Fang W. Efficient imine synthesis via oxidative coupling of alcohols with amines in an air atmosphere using a mesoporous manganese–zirconium solid solution catalyst. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02288h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mesoporous Mn1ZrxOy solid solution enables efficient imine formation from catalytic oxidative coupling of alcohols and amines at low temperature in an air atmosphere without base additives.
Collapse
Affiliation(s)
- Shipeng Wu
- School of Chemical Science and Technology
- Key Laboratory of Medicinal Chemistry for Natural Resource – Ministry of Education
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province
- Yunnan University
- 650091 Kunming
| | - Hao Zhang
- School of Chemical Science and Technology
- Key Laboratory of Medicinal Chemistry for Natural Resource – Ministry of Education
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province
- Yunnan University
- 650091 Kunming
| | - Qiue Cao
- School of Chemical Science and Technology
- Key Laboratory of Medicinal Chemistry for Natural Resource – Ministry of Education
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province
- Yunnan University
- 650091 Kunming
| | - Qihua Zhao
- School of Chemical Science and Technology
- Key Laboratory of Medicinal Chemistry for Natural Resource – Ministry of Education
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province
- Yunnan University
- 650091 Kunming
| | - Wenhao Fang
- School of Chemical Science and Technology
- Key Laboratory of Medicinal Chemistry for Natural Resource – Ministry of Education
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province
- Yunnan University
- 650091 Kunming
| |
Collapse
|
30
|
Liu J, Wang H, Ye R, Jian P, Wang L. Promotional effect of Mn-doping on the catalytic performance of NiO sheets for the selective oxidation of styrene. J Colloid Interface Sci 2020; 585:61-71. [PMID: 33279707 DOI: 10.1016/j.jcis.2020.11.069] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 02/08/2023]
Abstract
The direct oxidation of styrene into high-value chemicals under mild reaction conditions remains a great challenge in both academia and industry. Herein, we report a successful electronic structure modulation of intrinsic NiO sheets via Mn-doping towards the oxidation of styrene. By doping NiO with only a small content of Mn (Mn/Ni atomic ratio of 0.030), a 75.0% yield of STO can be achieved under the optimized reaction conditions, which is 2.13 times higher than that of the pure NiO. In addition, the catalyst exhibits robust stability and good recycling performance. The performance enhancement originates from the synergistic effect regarding the abundant Ni(II) species, the rich oxygen vacancy sites and the large amount of surface redox centers. This work provides new findings of the elemental-doping-induced multifunctionality in designing powerful catalysts for the efficient and selective oxidation of styrene and beyond.
Collapse
Affiliation(s)
- Jiangyong Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China.
| | - Haiyang Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Rongfei Ye
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Panming Jian
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Lixia Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| |
Collapse
|
31
|
Boosting styrene epoxidation via CoMn2O4 microspheres with unique porous yolk-shell architecture and synergistic intermetallic interaction. J Colloid Interface Sci 2020; 579:221-232. [DOI: 10.1016/j.jcis.2020.06.060] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/12/2020] [Accepted: 06/12/2020] [Indexed: 02/02/2023]
|
32
|
Yang J, Peng S, Shi Y, Ma S, Ding H, Rupprechter G, Wang J. Fast visual evaluation of the catalytic activity of CeO2: Simple colorimetric assay using 3,3′,5,5′-tetramethylbenzidine as indicator. J Catal 2020. [DOI: 10.1016/j.jcat.2020.05.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
|
34
|
Yan Z, Kang Y, Li D, Liu YC. Catalytic oxidation of sulfur dioxide over α-Fe2O3/SiO2 catalyst promoted with Co and Ce oxides. KOREAN J CHEM ENG 2020. [DOI: 10.1007/s11814-020-0477-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
35
|
Huang H, Ren W, Shu J. Influence of the Plasma of Pd–Ce/Porous Biomass Carbons Catalysts on the Surface Texture with Enhance Catalytic Activity Toward CO Oxidation. CATALYSIS SURVEYS FROM ASIA 2020. [DOI: 10.1007/s10563-020-09297-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
36
|
Qin J, Long Y, Gou G, Wu W, Luo Y, Cao X, Luo S, Wang K, Ma J. Tuning effect of amorphous Fe 2O 3 on Mn 3O 4 for efficient atom-economic synthesis of imines at low temperature: improving [O] transfer cycle of Mn 3+/Mn 2+ in Mn 3O 4. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01021a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel Fe2O3 modified Mn3O4 catalyst (Fe5Mn5-100) has been prepared by adopting a simple co-precipitation method following low temperature baking. Fe5Mn5-100 showed exceptionally high catalytic activity for the production of imine.
Collapse
Affiliation(s)
- Jiaheng Qin
- State Key Laboratory of Applied Organic Chemistry (SKLAOC)
- Gansu Provincial Engineering Laboratory for Chemical Catalysis
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Yu Long
- State Key Laboratory of Applied Organic Chemistry (SKLAOC)
- Gansu Provincial Engineering Laboratory for Chemical Catalysis
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Galian Gou
- State Key Laboratory of Applied Organic Chemistry (SKLAOC)
- Gansu Provincial Engineering Laboratory for Chemical Catalysis
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Wei Wu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC)
- Gansu Provincial Engineering Laboratory for Chemical Catalysis
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Yutong Luo
- State Key Laboratory of Applied Organic Chemistry (SKLAOC)
- Gansu Provincial Engineering Laboratory for Chemical Catalysis
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Xiao Cao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC)
- Gansu Provincial Engineering Laboratory for Chemical Catalysis
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Shicheng Luo
- State Key Laboratory of Applied Organic Chemistry (SKLAOC)
- Gansu Provincial Engineering Laboratory for Chemical Catalysis
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Kaizhi Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC)
- Gansu Provincial Engineering Laboratory for Chemical Catalysis
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Jiantai Ma
- State Key Laboratory of Applied Organic Chemistry (SKLAOC)
- Gansu Provincial Engineering Laboratory for Chemical Catalysis
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| |
Collapse
|
37
|
Wu S, Sun W, Chen J, Zhao J, Cao Q, Fang W, Zhao Q. Efficient imine synthesis from oxidative coupling of alcohols and amines under air atmosphere catalysed by Zn-doped Al2O3 supported Au nanoparticles. J Catal 2019. [DOI: 10.1016/j.jcat.2019.07.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|