1
|
Goswami A, Krishna SH, Gounder R, Schneider WF. Kinetic Monte Carlo Analysis Reveals Non-mean-field Active Site Dynamics in Cu-Zeolite-Catalyzed NO x Reduction. ACS Catal 2024; 14:8376-8388. [PMID: 38868104 PMCID: PMC11166141 DOI: 10.1021/acscatal.4c01856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 06/14/2024]
Abstract
Copper-exchanged chabazite (Cu-CHA) zeolites are the preferred catalysts for the selective catalytic reduction of NO x with NH3. The low temperature (473 K) SCR mechanism proceeds through a redox cycle between mobile and ammonia-solvated Cu(I) and Cu(II) complexes, as demonstrated by multiple experimental and computational investigations. The oxidation step requires two Cu(I) to migrate into the same cha cage to activate O2 and form a binuclear Cu(II)-di-oxo complex. Prior steady state and transient kinetic experiments find that the apparent rate constants for oxidation (per Cu ion) are sensitive to catalyst composition and follow nonmean-field kinetics. We develop a nonmean-field kinetic model for NO x SCR that incorporates a composition-dependent Cu(I) volumetric footprint centered at anionic [AlO4]- tetrahedral sites on the CHA lattice. We use Bayesian optimization to parameterize a kinetic Monte Carlo model against available experimental composition-dependent SCR rates and in situ Cu(II) fractions. We find that both rates and Cu(II) fractions of a majority of catalyst compositions can be captured by single oxidation and reduction rate constants combined with a composition-dependent Cu(I) cation footprint, highlighting the contributions of both Cu and Al densities to steady-state SCR performance of Cu-CHA. The work illustrates a pathway for extracting robust molecular insights from the kinetics of a dynamic catalytic system.
Collapse
Affiliation(s)
- Anshuman Goswami
- Department
of Chemical and Biomolecular Engineering, University of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - Siddarth H. Krishna
- Charles
D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Rajamani Gounder
- Charles
D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - William F. Schneider
- Department
of Chemical and Biomolecular Engineering, University of Notre Dame, Notre
Dame, Indiana 46556, United States
| |
Collapse
|
2
|
Millan R, Bello-Jurado E, Moliner M, Boronat M, Gomez-Bombarelli R. Effect of Framework Composition and NH 3 on the Diffusion of Cu + in Cu-CHA Catalysts Predicted by Machine-Learning Accelerated Molecular Dynamics. ACS CENTRAL SCIENCE 2023; 9:2044-2056. [PMID: 38033797 PMCID: PMC10683499 DOI: 10.1021/acscentsci.3c00870] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Indexed: 12/02/2023]
Abstract
Cu-exchanged zeolites rely on mobile solvated Cu+ cations for their catalytic activity, but the role of the framework composition in transport is not fully understood. Ab initio molecular dynamics simulations can provide quantitative atomistic insight but are too computationally expensive to explore large length and time scales or diverse compositions. We report a machine-learning interatomic potential that accurately reproduces ab initio results and effectively generalizes to allow multinanosecond simulations of large supercells and diverse chemical compositions. Biased and unbiased simulations of [Cu(NH3)2]+ mobility show that aluminum pairing in eight-membered rings accelerates local hopping and demonstrate that increased NH3 concentration enhances long-range diffusion. The probability of finding two [Cu(NH3)2]+ complexes in the same cage, which is key for SCR-NOx reaction, increases with Cu content and Al content but does not correlate with the long-range mobility of Cu+. Supporting experimental evidence was obtained from reactivity tests of Cu-CHA catalysts with a controlled chemical composition.
Collapse
Affiliation(s)
- Reisel Millan
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
- Instituto
de Tecnología Química, Universitat
Politècnica de València-Consejo Superior de Investigaciones
Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Estefanía Bello-Jurado
- Instituto
de Tecnología Química, Universitat
Politècnica de València-Consejo Superior de Investigaciones
Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Manuel Moliner
- Instituto
de Tecnología Química, Universitat
Politècnica de València-Consejo Superior de Investigaciones
Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Mercedes Boronat
- Instituto
de Tecnología Química, Universitat
Politècnica de València-Consejo Superior de Investigaciones
Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Rafael Gomez-Bombarelli
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
3
|
Dietschreit JCB, Diestler DJ, Gómez-Bombarelli R. Entropy and Energy Profiles of Chemical Reactions. J Chem Theory Comput 2023; 19:5369-5379. [PMID: 37535443 DOI: 10.1021/acs.jctc.3c00448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
The description of chemical processes at the molecular level is often facilitated by the use of reaction coordinates or collective variables (CVs). The CV measures the progress of the reaction and allows the construction of profiles that track how specific properties evolve as the reaction progresses. Whereas CVs are routinely used, especially alongside enhanced sampling techniques, the links among reaction profiles, thermodynamic state functions, and reaction rate constants are not rigorously exploited. Here, we report a unified treatment of such reaction profiles. Tractable expressions are derived for the free-energy, internal-energy, and entropy profiles as functions of only the CV. We demonstrate the ability of this treatment to extract quantitative insight from the entropy and internal-energy profiles of various real-world physicochemical processes, including intramolecular organic reactions, ionic transport in superionic electrolytes, and molecular transport in nanoporous materials.
Collapse
Affiliation(s)
- Johannes C B Dietschreit
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Dennis J Diestler
- University of Nebraska-Lincoln, Lincoln, Nebraska 68583, United States
| | - Rafael Gómez-Bombarelli
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
4
|
Krishna SH, Goswami A, Wang Y, Jones CB, Dean DP, Miller JT, Schneider WF, Gounder R. Influence of framework Al density in chabazite zeolites on copper ion mobility and reactivity during NOx selective catalytic reduction with NH3. Nat Catal 2023. [DOI: 10.1038/s41929-023-00932-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
5
|
Wu T, Cui Y, Lian A, Tian Y, Li R, Liu X, Yan J, Xue Y, Liu H, Wu B. Vehicle emissions of primary air pollutants from 2009 to 2019 and projection for the 14th Five-Year Plan period in Beijing, China. J Environ Sci (China) 2023; 124:513-521. [PMID: 36182160 DOI: 10.1016/j.jes.2021.11.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/23/2021] [Accepted: 11/30/2021] [Indexed: 06/16/2023]
Abstract
Over the past decade, the emission standards and fuel standards in Beijing have been upgraded twice, and the vehicle structure has been improved by accelerating the elimination of 2.95 million old vehicles. Through the formulation and implementation of these policies, the emissions of carbon monoxide (CO), volatile organic compounds (VOCs), nitrogen oxides (NOx), and fine particulate matter (PM2.5) in 2019 were 147.9, 25.3, 43.4, and 0.91 kton in Beijing, respectively. The emission factor method was adopted to better understand the emissions characteristics of primary air pollutants from combustion engine vehicles and to improve pollution control. In combination with the air quality improvement goals and the status of social and economic development during the 14th Five-Year Plan period in Beijing, different vehicle pollution control scenarios were established, and emissions reductions were projected. The results show that the emissions of four air pollutants (CO, VOCs, NOx, and PM2.5) from vehicles in Beijing decreased by an average of 68% in 2019, compared to their levels in 2009. The contribution of NOx emissions from diesel vehicles increased from 35% in 2009 to 56% in 2019, which indicated that clean and energy-saving diesel vehicle fleets should be further improved. Electric vehicle adoption could be an important measure to reduce pollutant emissions. With the further upgrading of vehicle structure and the adoption of electric vehicles, it is expected that the total emissions of the four vehicle pollutants can be reduced by 20%-41% by the end of the 14th Five-Year Plan period.
Collapse
Affiliation(s)
- Tongran Wu
- National Engineering Research Center of Urban Environmental Pollution Control, Beijing Municipal Research Institute of Environmental Protection, Beijing 100037, China
| | - Yangyang Cui
- National Engineering Research Center of Urban Environmental Pollution Control, Beijing Municipal Research Institute of Environmental Protection, Beijing 100037, China
| | - Aiping Lian
- Beijing Municipal Ecology and Environment Bureau, Beijing 100048, China
| | - Ye Tian
- Beijing Municipal Ecology and Environment Bureau, Beijing 100048, China
| | - Renfei Li
- National Engineering Research Center of Urban Environmental Pollution Control, Beijing Municipal Research Institute of Environmental Protection, Beijing 100037, China
| | - Xinyu Liu
- National Engineering Research Center of Urban Environmental Pollution Control, Beijing Municipal Research Institute of Environmental Protection, Beijing 100037, China
| | - Jing Yan
- National Engineering Research Center of Urban Environmental Pollution Control, Beijing Municipal Research Institute of Environmental Protection, Beijing 100037, China
| | - Yifeng Xue
- National Engineering Research Center of Urban Environmental Pollution Control, Beijing Municipal Research Institute of Environmental Protection, Beijing 100037, China.
| | - Huan Liu
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Bobo Wu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
6
|
Chen J, Huang W, Bao S, Zhang W, Liang T, Zheng S, Yi L, Guo L, Wu X. A review on the characterization of metal active sites over Cu-based and Fe-based zeolites for NH 3-SCR. RSC Adv 2022; 12:27746-27765. [PMID: 36320283 PMCID: PMC9517171 DOI: 10.1039/d2ra05107a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/20/2022] [Indexed: 06/07/2024] Open
Abstract
Cu-based and Fe-based zeolites are promising catalysts for NH3-SCR due to their high catalytic activity, wide temperature window and good hydrothermal stability, while the detailed investigation of NH3-SCR mechanism should be based on the accurate determination of active metal sites. This review systematically summarizes the qualitative and quantitative determination of metal active sites in Cu-based or Fe-based zeolites for NH3-SCR reactions based on advanced characterization methods such as UV-vis absorption (UV-vis), temperature-programmed reduction with H2 (H2-TPR), X-ray photoelectron spectroscopy (XPS), X-ray absorption fine structure spectroscopy (XAFS), Infrared spectroscopy (IR), Electron paramagnetic resonance (EPR), Mössbauer spectroscopy and DFT calculations. The application and limitations of different characterization methods are also discussed to provide insights for further study of the NH3-SCR reaction mechanism over metal-based zeolites.
Collapse
Affiliation(s)
- Jialing Chen
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology Wuhan 430081 China +86 027 68862335
| | - Wei Huang
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology Wuhan 430081 China +86 027 68862335
| | - Sizhuo Bao
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology Wuhan 430081 China +86 027 68862335
| | - Wenbo Zhang
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology Wuhan 430081 China +86 027 68862335
| | - Tingyu Liang
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology Wuhan 430205 China
| | - Shenke Zheng
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, School of Chemistry and Chemical Engineering, Huanggang Normal University Huanggang 438000 China
| | - Lan Yi
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology Wuhan 430081 China +86 027 68862335
| | - Li Guo
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology Wuhan 430081 China +86 027 68862335
| | - Xiaoqin Wu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology Wuhan 430081 China +86 027 68862335
| |
Collapse
|
7
|
Dietschreit JCB, Diestler DJ, Hulm A, Ochsenfeld C, Gómez-Bombarelli R. From free-energy profiles to activation free energies. J Chem Phys 2022; 157:084113. [DOI: 10.1063/5.0102075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Given a chemical reaction going from reactant (R) to the product (P) on a potential energy surface (PES) and a collective variable (CV) discriminating between R and P, we define the free-energy profile (FEP) as the logarithm of the marginal Boltzmann distribution of the CV. This FEP is not a true free energy. Nevertheless, it is common to treat the FEP as the “free-energy” analog of the minimum potential energy path and to take the activation free energy, [Formula: see text], as the difference between the maximum at the transition state and the minimum at R. We show that this approximation can result in large errors. The FEP depends on the CV and is, therefore, not unique. For the same reaction, different discriminating CVs can yield different [Formula: see text]. We derive an exact expression for the activation free energy that avoids this ambiguity. We find [Formula: see text] to be a combination of the probability of the system being in the reactant state, the probability density on the dividing surface, and the thermal de Broglie wavelength associated with the transition. We apply our formalism to simple analytic models and realistic chemical systems and show that the FEP-based approximation applies only at low temperatures for CVs with a small effective mass. Most chemical reactions occur on complex, high-dimensional PES that cannot be treated analytically and pose the added challenge of choosing a good CV. We study the influence of that choice and find that, while the reaction free energy is largely unaffected, [Formula: see text] is quite sensitive.
Collapse
Affiliation(s)
- Johannes C. B. Dietschreit
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | - Andreas Hulm
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 München, Germany
| | - Christian Ochsenfeld
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 München, Germany
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, D-70569 Stuttgart, Germany
| | - Rafael Gómez-Bombarelli
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
8
|
Wu Y, Ma Y, Wang Y, Rappé KG, Washton NM, Wang Y, Walter ED, Gao F. Rate Controlling in Low-Temperature Standard NH 3-SCR: Implications from Operando EPR Spectroscopy and Reaction Kinetics. J Am Chem Soc 2022; 144:9734-9746. [PMID: 35605129 DOI: 10.1021/jacs.2c01933] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A series of seven Cu/SSZ-13 catalysts with Si/Al = 6.7 are used to elucidate key rate-controlling factors during low-temperature standard ammonia-selective catalytic reduction (NH3-SCR), via a combination of SCR kinetics and operando electron paramagnetic resonance (EPR) spectroscopy. Strong Cu-loading-dependent kinetics, with Cu atomic efficiency increasing nearly by an order of magnitude, is found when per chabazite cage occupancy for Cu ion increases from ∼0.04 to ∼0.3. This is due mainly to the release of intercage Cu transfer constraints that facilitates the redox chemistry, as evidenced from detailed Arrhenius analysis. Operando EPR spectroscopy studies reveal strong connectivity between Cu-ion dynamics and SCR kinetics, based on which it is concluded that under low-temperature steady-state SCR, kinetically most relevant Cu species are those with the highest intercage mobility. Transient binuclear Cu species are mechanistically relevant species, but their splitting and cohabitation are indispensable for low-temperature kinetics.
Collapse
Affiliation(s)
- Yiqing Wu
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Yue Ma
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Yilin Wang
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Kenneth G Rappé
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Nancy M Washton
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Yong Wang
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States.,Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99163, United States
| | - Eric D Walter
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Feng Gao
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| |
Collapse
|
9
|
Wu G, Liu S, Chen Z, Yu Q, Chu Y, Xiao H, Peng H, Fang D, Deng S, Chen Y. Promotion effect of alkaline leaching on the catalytic performance over Cu/Fe-SSZ-13 catalyst for selective catalytic reduction of NOx with NH3. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Molokova A, Borfecchia E, Martini A, Pankin IA, Atzori C, Mathon O, Bordiga S, Wen F, Vennestrøm PNR, Berlier G, Janssens TVW, Lomachenko KA. SO 2 Poisoning of Cu-CHA deNO x Catalyst: The Most Vulnerable Cu Species Identified by X-ray Absorption Spectroscopy. JACS AU 2022; 2:787-792. [PMID: 35557768 PMCID: PMC9088759 DOI: 10.1021/jacsau.2c00053] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 05/11/2023]
Abstract
Cu-exchanged chabazite zeolites (Cu-CHA) are effective catalysts for the NH3-assisted selective catalytic reduction of NO (NH3-SCR) for the abatement of NO x emission from diesel vehicles. However, the presence of a small amount of SO2 in diesel exhaust gases leads to a severe reduction in the low-temperature activity of these catalysts. To shed light on the nature of such deactivation, we characterized a Cu-CHA catalyst under well-defined exposures to SO2 using in situ X-ray absorption spectroscopy. By varying the pretreatment procedure prior to the SO2 exposure, we have selectively prepared CuI and CuII species with different ligations, which are relevant for the NH3-SCR reaction. The highest reactivity toward SO2 was observed for CuII species coordinated to both NH3 and extraframework oxygen, in particular for [CuII 2(NH3)4O2]2+ complexes. Cu species without either ammonia or extraframework oxygen ligands were much less reactive, and the associated SO2 uptake was significantly lower. These results explain why SO2 mostly affects the low-temperature activity of Cu-CHA catalysts, since the dimeric complex [CuII 2(NH3)4O2]2+ is a crucial intermediate in the low-temperature NH3-SCR catalytic cycle.
Collapse
Affiliation(s)
- Anastasia
Yu. Molokova
- European
Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France
- Department
of Chemistry and NIS Centre, University
of Turin, via Giuria
7,10125 Turin, Italy
| | - Elisa Borfecchia
- Department
of Chemistry and NIS Centre, University
of Turin, via Giuria
7,10125 Turin, Italy
| | - Andrea Martini
- Department
of Chemistry and NIS Centre, University
of Turin, via Giuria
7,10125 Turin, Italy
- The
Smart Materials Research Institute, Southern
Federal University, Sladkova
174/28, 344090 Rostov-on-Don, Russia
| | - Ilia A. Pankin
- The
Smart Materials Research Institute, Southern
Federal University, Sladkova
174/28, 344090 Rostov-on-Don, Russia
| | - Cesare Atzori
- European
Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France
| | - Olivier Mathon
- European
Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France
| | - Silvia Bordiga
- Department
of Chemistry and NIS Centre, University
of Turin, via Giuria
7,10125 Turin, Italy
| | - Fei Wen
- Umicore
AG & Co, Rodenbacher Chaussee 4, 63457 Hanau, Germany
| | | | - Gloria Berlier
- Department
of Chemistry and NIS Centre, University
of Turin, via Giuria
7,10125 Turin, Italy
| | | | - Kirill A. Lomachenko
- European
Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France
| |
Collapse
|
11
|
Ge J, Ohata Y, Ohnishi T, Moteki T, Ogura M. Highly Dispersed Co/Zn-Doped Zeolitic Imidazolate Framework-Derived Carbon Nanoparticles with High NO Adsorption Capacity at Low Operating Temperature. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Jiachen Ge
- Institute of Industrial Science, The University of Tokyo, Komaba, Meguro, Tokyo 153-8505, Japan
| | - Yusuke Ohata
- Institute of Industrial Science, The University of Tokyo, Komaba, Meguro, Tokyo 153-8505, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| | - Takeshi Ohnishi
- Institute of Industrial Science, The University of Tokyo, Komaba, Meguro, Tokyo 153-8505, Japan
| | - Takahiko Moteki
- Institute of Industrial Science, The University of Tokyo, Komaba, Meguro, Tokyo 153-8505, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| | - Masaru Ogura
- Institute of Industrial Science, The University of Tokyo, Komaba, Meguro, Tokyo 153-8505, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
12
|
Zhang S, Meng Y, Pang L, Ding Q, Chen Z, Guo Y, Cai W, Li T. Understanding the direct relationship between various structure-directing agents and low-temperature hydrothermal durability over Cu-SAPO-34 during the NH3-SCR reaction. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02046c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrolysis of Si–O(H)–Al bonds and the loss of active Cu(OH)+ species jointly contribute towards the deactivation of Cu-SAPO-34 under a moist environment at low temperature (<100 °C).
Collapse
Affiliation(s)
- Shoute Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Ying Meng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Lei Pang
- DongFeng Trucks R&D Center, Zhushanhu Road No. 653, Wuhan 430056, P. R. China
| | - Qianzhao Ding
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Zhen Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Yanbing Guo
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Weiquan Cai
- School of Chemistry and Chemical Engineering, Guangzhou Higher Education Mega Center, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou, 510006, China
| | - Tao Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
13
|
Temperature dependence of Cu(I) oxidation and Cu(II) reduction kinetics in the selective catalytic reduction of NOx with NH3 on Cu-chabazite zeolites. J Catal 2021. [DOI: 10.1016/j.jcat.2021.08.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Millan R, Cnudde P, van Speybroeck V, Boronat M. Mobility and Reactivity of Cu + Species in Cu-CHA Catalysts under NH 3-SCR-NOx Reaction Conditions: Insights from AIMD Simulations. JACS AU 2021; 1:1778-1787. [PMID: 34723280 PMCID: PMC8549050 DOI: 10.1021/jacsau.1c00337] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Indexed: 05/25/2023]
Abstract
The mobility of the copper cations acting as active sites for the selective catalytic reduction of nitrogen oxides with ammonia in Cu-CHA catalysts varies with temperature and feed composition. Herein, the migration of [Cu(NH3)2]+ complexes between two adjacent cavities of the chabazite structure, including other reactant molecules (NO, O2, H2O, and NH3), in the initial and final cavities is investigated using ab initio molecular dynamics (AIMD) simulations combined with enhanced sampling techniques to describe hopping events from one cage to the other. We find that such diffusion is only significantly hindered by the presence of excess NH3 or NO in the initial cavity, since both reactants form with [Cu(NH3)2]+ stable intermediates which are too bulky to cross the 8-ring windows connecting the cavities. The presence of O2 modifies strongly the interaction of NO with Cu+. At low temperatures, we observe NO detachment from Cu+ and increased mobility of the [Cu(NH3)2]+ complex, while at high temperatures, NO reacts spontaneously with O2 to form NO2. The present simulations give evidence for recent experimental observations, namely, an NH3 inhibition effect on the SCR reaction at low temperatures, and transport limitations of NO and NH3 at high temperatures. Our first principle simulations mimicking operating conditions support the existence of two different reaction mechanisms operating at low and high temperatures, the former involving dimeric Cu(NH3)2-O2-Cu(NH3)2 species and the latter occurring by direct NO oxidation to NO2 in one single cavity.
Collapse
Affiliation(s)
- Reisel Millan
- Instituto
de Tecnología Química, Universitat
Politècnica de València-Consejo Superior de Investigaciones
Científicas, Avenida de los Naranjos s/n, 46022 València, Spain
| | - Pieter Cnudde
- Center
for Molecular Modeling, Ghent University, Technologiepark 46, 9052 Zwijnaarde, Belgium
| | | | - Mercedes Boronat
- Instituto
de Tecnología Química, Universitat
Politècnica de València-Consejo Superior de Investigaciones
Científicas, Avenida de los Naranjos s/n, 46022 València, Spain
| |
Collapse
|
15
|
Kubota H, Toyao T, Maeno Z, Inomata Y, Murayama T, Nakazawa N, Inagaki S, Kubota Y, Shimizu KI. Analogous Mechanistic Features of NH 3-SCR over Vanadium Oxide and Copper Zeolite Catalysts. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02860] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hiroe Kubota
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Takashi Toyao
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| | - Zen Maeno
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Yusuke Inomata
- Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Toru Murayama
- Research Center for Hydrogen Energy-Based Society, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
- Yantai Key Laboratory of Gold Catalysis and Engineering, Shandong Applied Research Center of Gold Nanotechnology (Au-SDARC), School of Chemistry & Chemical Engineering, Yantai University, Yantai 264005, China
| | - Naoto Nakazawa
- Division of Materials Science and Chemical Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Satoshi Inagaki
- Division of Materials Science and Chemical Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Yoshihiro Kubota
- Division of Materials Science and Chemical Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Ken-ichi Shimizu
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
16
|
Cao X, Tian Y, Shen Y, Wu T, Li R, Liu X, Yeerken A, Cui Y, Xue Y, Lian A. Emission Variations of Primary Air Pollutants from Highway Vehicles and Implications during the COVID-19 Pandemic in Beijing, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18084019. [PMID: 33921210 PMCID: PMC8070592 DOI: 10.3390/ijerph18084019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 11/16/2022]
Abstract
According to the traffic flow variation from January 2019 to August 2020, emissions of primary air pollutants from highway vehicles were calculated based on the emission factor method, which integrated the actual structure of on-road vehicles. The characteristics of on-highway traffic flow and pollution emissions were compared during various progression stages of coronavirus disease (COVID-19). The results showed that the average daily traffic volume decreased by 38.2% in 2020, with a decrease of 62% during the strict lockdown due to the impact of COVID-19. The daily emissions of primary atmospheric pollutants decreased by 29.2% in 2020 compared to the same period in 2019. As for the structure of on-highway vehicle types, the small and medium-sized passenger vehicles predominated, which accounted for 76.3% of traffic, while trucks and large passenger vehicles accounted for 19.7% and 4.0%, but contributed 58.4% and 33.9% of nitrogen oxide (NOx) emissions, respectively. According to the simulation results of the ADMS model, the average concentrations of NOx were reduced by 12.0 µg/m3 compared with the same period in 2019. As for the implication for future pollution control, it is necessary to further optimize the structure of on-highway and the road traffic vehicle types and increase the proportions of new-energy vehicles and vehicles with high emission standards.
Collapse
Affiliation(s)
- Xizi Cao
- National Engineering Research Center of Urban Environmental Pollution Control, Beijing Municipal Research Institute of Environmental Protection, Beijing 100037, China; (X.C.); (Y.S.); (T.W.); (R.L.); (X.L.); (A.Y.); (Y.C.)
| | - Ye Tian
- Beijing Municipal Ecology and Environment Bureau, Beijing 100048, China;
| | - Yan Shen
- National Engineering Research Center of Urban Environmental Pollution Control, Beijing Municipal Research Institute of Environmental Protection, Beijing 100037, China; (X.C.); (Y.S.); (T.W.); (R.L.); (X.L.); (A.Y.); (Y.C.)
| | - Tongran Wu
- National Engineering Research Center of Urban Environmental Pollution Control, Beijing Municipal Research Institute of Environmental Protection, Beijing 100037, China; (X.C.); (Y.S.); (T.W.); (R.L.); (X.L.); (A.Y.); (Y.C.)
| | - Renfei Li
- National Engineering Research Center of Urban Environmental Pollution Control, Beijing Municipal Research Institute of Environmental Protection, Beijing 100037, China; (X.C.); (Y.S.); (T.W.); (R.L.); (X.L.); (A.Y.); (Y.C.)
| | - Xinyu Liu
- National Engineering Research Center of Urban Environmental Pollution Control, Beijing Municipal Research Institute of Environmental Protection, Beijing 100037, China; (X.C.); (Y.S.); (T.W.); (R.L.); (X.L.); (A.Y.); (Y.C.)
| | - Amanzheli Yeerken
- National Engineering Research Center of Urban Environmental Pollution Control, Beijing Municipal Research Institute of Environmental Protection, Beijing 100037, China; (X.C.); (Y.S.); (T.W.); (R.L.); (X.L.); (A.Y.); (Y.C.)
| | - Yangyang Cui
- National Engineering Research Center of Urban Environmental Pollution Control, Beijing Municipal Research Institute of Environmental Protection, Beijing 100037, China; (X.C.); (Y.S.); (T.W.); (R.L.); (X.L.); (A.Y.); (Y.C.)
| | - Yifeng Xue
- National Engineering Research Center of Urban Environmental Pollution Control, Beijing Municipal Research Institute of Environmental Protection, Beijing 100037, China; (X.C.); (Y.S.); (T.W.); (R.L.); (X.L.); (A.Y.); (Y.C.)
- Correspondence: (Y.X.); (A.L.)
| | - Aiping Lian
- Beijing Municipal Ecology and Environment Bureau, Beijing 100048, China;
- Correspondence: (Y.X.); (A.L.)
| |
Collapse
|
17
|
Ohata Y, Ohnishi T, Moteki T, Ogura M. High NH 3-SCR reaction rate with low dependence on O 2 partial pressure over Al-rich Cu-*BEA zeolite. RSC Adv 2021; 11:10381-10384. [PMID: 35423523 PMCID: PMC8695709 DOI: 10.1039/d1ra00943e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/05/2021] [Indexed: 11/21/2022] Open
Abstract
Dependence of NH3-SCR reaction rate on O2 partial pressure was investigated at 473 K over Cu ion-exchanged MOR, MFI, CHA and *BEA zeolites with varying “Cu density in micropores”. Among the zeolites, Cu–*BEA zeolite demonstrated promising potential as an effective catalyst for NH3-SCR over a wide range of O2 partial pressure. It was revealed that Al-rich Cu–*BEA zeolite exhibit high reaction rate for NH3-SCR at 473 K in low PO2 reaction condition.![]()
Collapse
Affiliation(s)
- Yusuke Ohata
- Institute of Industrial Science, The University of Tokyo Komaba, Meguro Tokyo 153-8505 Japan
| | - Takeshi Ohnishi
- Institute of Industrial Science, The University of Tokyo Komaba, Meguro Tokyo 153-8505 Japan
| | - Takahiko Moteki
- Institute of Industrial Science, The University of Tokyo Komaba, Meguro Tokyo 153-8505 Japan .,Elements Strategy Initiative for Catalysts and Batteries, Kyoto University Katsura Kyoto 615-8520 Japan
| | - Masaru Ogura
- Institute of Industrial Science, The University of Tokyo Komaba, Meguro Tokyo 153-8505 Japan .,Elements Strategy Initiative for Catalysts and Batteries, Kyoto University Katsura Kyoto 615-8520 Japan
| |
Collapse
|
18
|
Ohata Y, Kubota H, Toyao T, Shimizu KI, Ohnishi T, Moteki T, Ogura M. Kinetic and spectroscopic insights into the behaviour of Cu active site for NH 3-SCR over zeolites with several topologies. Catal Sci Technol 2021. [DOI: 10.1039/d0cy01838d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Zeolite topology has a great effect on the dependence of NH3-SCR rates over Cu–zeolites at 473 K on Cu density. It is revealed by the time-resolved UV-vis measurements that zeolites mainly affect the oxidation property of Cu ion by O2.
Collapse
Affiliation(s)
- Yusuke Ohata
- Institute of Industrial Science
- The University of Tokyo
- Tokyo 153-8505
- Japan
| | - Hiroe Kubota
- Institute for Catalysis
- Hokkaido University
- Sapporo 001-0021
- Japan
| | - Takashi Toyao
- Institute for Catalysis
- Hokkaido University
- Sapporo 001-0021
- Japan
- Elements Strategy Initiative for Catalysts and Batteries
| | - Ken-ichi Shimizu
- Institute for Catalysis
- Hokkaido University
- Sapporo 001-0021
- Japan
- Elements Strategy Initiative for Catalysts and Batteries
| | - Takeshi Ohnishi
- Institute of Industrial Science
- The University of Tokyo
- Tokyo 153-8505
- Japan
| | - Takahiko Moteki
- Institute of Industrial Science
- The University of Tokyo
- Tokyo 153-8505
- Japan
- Elements Strategy Initiative for Catalysts and Batteries
| | - Masaru Ogura
- Institute of Industrial Science
- The University of Tokyo
- Tokyo 153-8505
- Japan
- Elements Strategy Initiative for Catalysts and Batteries
| |
Collapse
|
19
|
Wilcox LN, Krishna SH, Jones CB, Gounder R. Mechanistic studies of NH 3-assisted reduction of mononuclear Cu( ii) cation sites in Cu-CHA zeolites. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01646f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Spectroscopic, titrimetric, and gas-phase product analysis methods reveal a six-electron process for NH3-assisted reduction of mononuclear Cu(ii) sites to Cu(i) in Cu-CHA zeolites of different Cu(ii) site speciation and density.
Collapse
Affiliation(s)
- Laura N. Wilcox
- Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Siddarth H. Krishna
- Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Casey B. Jones
- Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Rajamani Gounder
- Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
20
|
Millan R, Cnudde P, Hoffman AEJ, Lopes CW, Concepción P, van Speybroeck V, Boronat M. Theoretical and Spectroscopic Evidence of the Dynamic Nature of Copper Active Sites in Cu-CHA Catalysts under Selective Catalytic Reduction (NH 3-SCR-NO x) Conditions. J Phys Chem Lett 2020; 11:10060-10066. [PMID: 33179925 PMCID: PMC7720274 DOI: 10.1021/acs.jpclett.0c03020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The dynamic nature of the copper cations acting as active sites for selective catalytic reduction of nitrogen oxides with ammonia is investigated using a combined theoretical and spectroscopic approach. Ab initio molecular dynamics simulations of Cu-CHA catalysts in contact with reactants and intermediates at realistic operating conditions show that only ammonia is able to release Cu+ and Cu2+ cations from their positions coordinated to the zeolite framework, forming mobile Cu+(NH3)2 and Cu2+(NH3)4 complexes that migrate to the center of the cavity. Herein, we give evidence that such mobilization of copper cations modifies the vibrational fingerprint in the 800-1000 cm-1 region of the IR spectra. Bands associated with the lattice asymmetric T-O-T vibrations are perturbed by the presence of coordinated cations, and allow one to experimentally follow the dynamic reorganization of the active sites at operating conditions.
Collapse
Affiliation(s)
- Reisel Millan
- Instituto
de Tecnología Química, Universitat Politècnica
de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 València, Spain
| | - Pieter Cnudde
- Center
for Molecular Modeling, Ghent University, Technologiepark 46, 9052 Zwijnaarde, Belgium
| | - Alexander E. J. Hoffman
- Center
for Molecular Modeling, Ghent University, Technologiepark 46, 9052 Zwijnaarde, Belgium
| | - Christian W. Lopes
- Laboratório
de Reatividade e Catálise (LRC), Universidade Federal do Rio Grande do Sul, Bento Gonçalves Avenue 9500, 91501-970 Porto Alegre, Brazil
| | - Patricia Concepción
- Instituto
de Tecnología Química, Universitat Politècnica
de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 València, Spain
| | | | - Mercedes Boronat
- Instituto
de Tecnología Química, Universitat Politècnica
de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 València, Spain
| |
Collapse
|
21
|
Fe-Exchanged Small-Pore Zeolites as Ammonia Selective Catalytic Reduction (NH3-SCR) Catalysts. Catalysts 2020. [DOI: 10.3390/catal10111324] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Cu-exchanged small-pore zeolites have been extensively studied in the past decade as state-of-the-art selective catalytic reduction (SCR) catalysts for diesel engine exhaust NOx abatement for the transportation industry. During this time, Fe-exchanged small-pore zeolites, e.g., Fe/SSZ-13, Fe/SAPO-34, Fe/SSZ-39 and high-silica Fe/LTA, have also been investigated but much less extensively. In comparison to their Cu-exchanged counterparts, such Fe/zeolite catalysts display inferior low-temperature activities, but improved stability and high-temperature SCR selectivities. Such characteristics entitle these catalysts to be considered as key components of highly efficient emission control systems to improve the overall catalyst performance. In this short review, recent studies on Fe-exchanged small-pore zeolite SCR catalysts are summarized, including (1) the synthesis of small-pore Fe/zeolites; (2) nature of the SCR active Fe species in these catalysts as determined by experimental and theoretical approaches, including Fe species transformation during hydrothermal aging; (3) SCR reactions and structure-function correlations; and (4) a few aspects on industrial applications.
Collapse
|
22
|
Paolucci C, Di Iorio JR, Schneider WF, Gounder R. Solvation and Mobilization of Copper Active Sites in Zeolites by Ammonia: Consequences for the Catalytic Reduction of Nitrogen Oxides. Acc Chem Res 2020; 53:1881-1892. [PMID: 32786332 DOI: 10.1021/acs.accounts.0c00328] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
ConspectusCopper-exchanged chabazite (Cu-CHA) zeolites are catalysts used in diesel emissions control for the abatement of nitrogen oxides (NOx) via selective catalytic reduction (SCR) reactions with ammonia as the reductant. The discovery of these materials in the early 2010s enabled a step-change improvement in diesel emissions aftertreatment technology. Key advantages of Cu-CHA zeolites over prior materials include their effectiveness at the lower temperatures characteristic of diesel exhaust, their durability under high-temperature hydrothermal conditions, and their resistance to poisoning from residual hydrocarbons present in exhaust. Fundamental catalysis research has since uncovered mechanistic and kinetic features that underpin the ability of Cu-CHA to selectively reduce NOx under strongly oxidizing conditions and to achieve improved NOx conversion relative to other zeolite frameworks, particularly at low exhaust temperatures and with ammonia instead of other reductants.One critical mechanistic feature is the NH3 solvation of exchanged Cu ions at low temperatures (<523 K) to create cationic Cu-amine coordination complexes that are ionically tethered to anionic Al framework sites. This ionic tethering confers regulated mobility that facilitates interconversion between mononuclear and binuclear Cu complexes, which is necessary to propagate SCR through a Cu2+/Cu+ redox cycle during catalytic turnover. This dynamic catalytic mechanism, wherein single and dual metal sites interconvert to mediate different half-reactions of the redox cycle, combines features canonically associated with homogeneous and heterogeneous reaction mechanisms.In this Account, we describe how a unified experimental and theoretical interrogation of Cu-CHA catalysts in operando provided quantitative evidence of regulated Cu ion mobility and its role in the SCR mechanism. This approach relied on new synthetic methods to prepare model Cu-CHA zeolites with varied active-site structures and spatial densities in order to verify that the kinetic and mechanistic models describe the catalytic behavior of a family of materials of diverse composition, and on new computational approaches to capture the active-site structure and dynamics under conditions representative of catalysis. Ex situ interrogation revealed that the Cu structure depends on the conditions for the zeolite synthesis, which influence the framework Al substitution patterns, and that statistical and electronic structure models can enumerate Cu site populations for a known Al distribution. This recognition unifies seemingly disparate spectroscopic observations and inferences regarding Cu ion structure and responses to different external conditions. SCR rates depend strongly on the Cu spatial density and zeolite composition in kinetic regimes where Cu+ oxidation with O2 becomes rate-limiting, as occurs at lower temperatures and under fuel-rich conditions. Transient experiments, ab initio molecular dynamics simulations, and statistical models relate these sensitivities to the mobility constraints imposed by the CHA framework on NH3-solvated Cu ions, which regulate the pore volume accessible to these ions and their ability to pair and complete the catalytic cycle. This highlights the key characteristics of the CHA framework that enable superior performance under low-temperature SCR reaction conditions.This work illustrates the power of precise control over a catalytic material, simultaneous kinetic and spectroscopic interrogation over a wide range of reaction conditions, and computational strategies tailored to capture those reaction conditions to reveal in microscopic detail the mechanistic features of a complex and widely practiced catalysis. In doing so, it highlights the key role of ion mobility in catalysis and thus potentially a more general phenomenon of reactant solvation and active site mobilization in reactions catalyzed by exchanged metal ions in zeolites.
Collapse
Affiliation(s)
- Christopher Paolucci
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| | - John R. Di Iorio
- Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - William F. Schneider
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Rajamani Gounder
- Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
23
|
Recent advances in catalytic automotive emission control: Passive
NO
storage at low temperatures. J CHIN CHEM SOC-TAIP 2020. [DOI: 10.1002/jccs.202000203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
24
|
Jones CB, Khurana I, Krishna SH, Shih AJ, Delgass WN, Miller JT, Ribeiro FH, Schneider WF, Gounder R. Effects of dioxygen pressure on rates of NOx selective catalytic reduction with NH3 on Cu-CHA zeolites. J Catal 2020. [DOI: 10.1016/j.jcat.2020.05.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
25
|
Krishna SH, Jones CB, Miller JT, Ribeiro FH, Gounder R. Combining Kinetics and Operando Spectroscopy to Interrogate the Mechanism and Active Site Requirements of NO x Selective Catalytic Reduction with NH 3 on Cu-Zeolites. J Phys Chem Lett 2020; 11:5029-5036. [PMID: 32496798 DOI: 10.1021/acs.jpclett.0c00903] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
NOx selective catalytic reduction (SCR) with NH3 on Cu-zeolites is a commercial emissions control technology for diesel and lean-burn engines. Mitigating low-temperature emissions remains an outstanding challenge, motivating an improved understanding of the reaction mechanism, active site requirements, and rate-determining processes at low temperatures (<523 K). In this Perspective, we discuss how operando spectroscopy provides crucial information about how the structures, coordination environments, and oxidation states of Cu active sites depend on reaction conditions and sample composition; when combined with kinetic measurements, such operando data provide insights into the Cu site and spatial density requirements for reduction and oxidation steps relevant to the Cu(II)/Cu(I) SCR redox cycle. Isolated Cu ions coordinated to zeolite oxygen atoms ex situ become coordinated to NH3 in situ and dynamically interconvert between mononuclear and binuclear NH3-solvated Cu complexes to catalyze SCR turnovers. We conclude with future research directions that can benefit from combining quantitative kinetic measurements with operando spectroscopy.
Collapse
Affiliation(s)
- Siddarth H Krishna
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Casey B Jones
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Jeffrey T Miller
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Fabio H Ribeiro
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Rajamani Gounder
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
26
|
Liu C, Kubota H, Amada T, Kon K, Toyao T, Maeno Z, Ueda K, Ohyama J, Satsuma A, Tanigawa T, Tsunoji N, Sano T, Shimizu K. In Situ
Spectroscopic Studies on the Redox Cycle of NH
3
−SCR over Cu−CHA Zeolites. ChemCatChem 2020. [DOI: 10.1002/cctc.202000024] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chong Liu
- Institute for CatalysisHokkaido University N-21, W-10 Sapporo 001-0021 Japan
| | - Hiroe Kubota
- Institute for CatalysisHokkaido University N-21, W-10 Sapporo 001-0021 Japan
| | - Takehiro Amada
- Institute for CatalysisHokkaido University N-21, W-10 Sapporo 001-0021 Japan
| | - Kenichi Kon
- Institute for CatalysisHokkaido University N-21, W-10 Sapporo 001-0021 Japan
| | - Takashi Toyao
- Institute for CatalysisHokkaido University N-21, W-10 Sapporo 001-0021 Japan
- Elements Strategy Initiative for Catalysts and BatteriesKyoto University Katsura, Kyoto 615-8520 Japan
| | - Zen Maeno
- Institute for CatalysisHokkaido University N-21, W-10 Sapporo 001-0021 Japan
| | - Kakuya Ueda
- Department of Materials Chemistry, Graduate School of EngineeringNagoya University Furo-cho, Chikusa-ku, Nagoya 464-8603 Japan
| | - Junya Ohyama
- Elements Strategy Initiative for Catalysts and BatteriesKyoto University Katsura, Kyoto 615-8520 Japan
- Faculty of Advanced Science and TechnologyKumamoto University 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555 Japan
| | - Atsushi Satsuma
- Elements Strategy Initiative for Catalysts and BatteriesKyoto University Katsura, Kyoto 615-8520 Japan
- Department of Materials Chemistry, Graduate School of EngineeringNagoya University Furo-cho, Chikusa-ku, Nagoya 464-8603 Japan
| | - Takuya Tanigawa
- Department of Applied Chemistry, Graduate School of EngineeringHiroshima University Higashi-Hiroshima 739-8527 Japan
| | - Nao Tsunoji
- Department of Applied Chemistry, Graduate School of EngineeringHiroshima University Higashi-Hiroshima 739-8527 Japan
| | - Tsuneji Sano
- Department of Applied Chemistry, Graduate School of EngineeringHiroshima University Higashi-Hiroshima 739-8527 Japan
| | - Ken‐ichi Shimizu
- Institute for CatalysisHokkaido University N-21, W-10 Sapporo 001-0021 Japan
- Elements Strategy Initiative for Catalysts and BatteriesKyoto University Katsura, Kyoto 615-8520 Japan
| |
Collapse
|