1
|
Wang H, Li X, Zhang G, Gu Z, Chen H, Wei G, Shen S, Cheng J, Zhang J. Recent Progress in Balancing the Activity, Durability, and Low Ir Content for Ir-Based Oxygen Evolution Reaction Electrocatalysts in Acidic Media. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410407. [PMID: 39711255 DOI: 10.1002/smll.202410407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/06/2024] [Indexed: 12/24/2024]
Abstract
Proton exchange membrane (PEM) electrolysis faces challenges associated with high overpotential and acidic environments, which pose significant hurdles in developing highly active and durable electrocatalysts for the oxygen evolution reaction (OER). Ir-based nanomaterials are considered promising OER catalysts for PEM due to their favorable intrinsic activity and stability under acidic conditions. However, their high cost and limited availability pose significant limitations. Consequently, numerous studies have emerged aimed at reducing iridium content while maintaining high activity and durability. Furthermore, the research on the OER mechanism of Ir-based catalysts has garnered widespread attention due to differing views among researchers. The recent progress in balancing activity, durability, and low iridium content in Ir-based catalysts is summarized in this review, with a particular focus on the effects of catalyst morphology, heteroatom doping, substrate introduction, and novel structure development on catalyst performance from four perspectives. Additionally, the recent mechanistic studies on Ir-based OER catalysts is discussed, and both theoretical and experimental approaches is summarized to elucidate the Ir-based OER mechanism. Finally, the perspectives on the challenges and future developments of Ir-based OER catalysts is presented.
Collapse
Affiliation(s)
- Huimin Wang
- Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinyi Li
- Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guozhu Zhang
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zihan Gu
- Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hao Chen
- Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guanghua Wei
- Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuiyun Shen
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Junfang Cheng
- Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Junliang Zhang
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
2
|
Yang Y, Chen D, Hu S, Pei P, Xu X. Advanced Ir-Based Alloy Electrocatalysts for Proton Exchange Membrane Water Electrolyzers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410372. [PMID: 39901480 DOI: 10.1002/smll.202410372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/16/2024] [Indexed: 02/05/2025]
Abstract
Proton exchange membrane water electrolyzer (PEMWE) coupled with renewable energy to produce hydrogen is an important part of clean energy acquisition in the future. However, the slow kinetics of the oxygen evolution reaction (OER) hinder the large-scale application of PEM water electrolysis technology. To deal with the problems existing in the PEM electrolyzer and improve the electrolysis efficiency, substantial efforts are invested in the development of cost-effective and stable electrocatalysts. Within this scenario, the different OER reaction mechanisms are first discussed here. Based on the in-depth understanding of the reaction mechanism, the research progress of low-iridium noble metal alloys is reviewed from the aspects of special effects, design strategies, reaction mechanisms, and synthesis methods. Finally, the challenges and prospects of the future development of high-efficiency and low-precious metal OER electrocatalysts are presented.
Collapse
Affiliation(s)
- Yuan Yang
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Dongfang Chen
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, Guangdong, 528000, China
| | - Song Hu
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, Guangdong, 528000, China
| | - Pucheng Pei
- School of Vehicle and Mobility, Tsinghua University, Beijing, 100084, China
| | - Xiaoming Xu
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, Guangdong, 528000, China
| |
Collapse
|
3
|
Hu X, Tian W, Wu Z, Li X, Li Y, Wang H. Synthesis of Zr 2ON 2 via a urea-glass route to modulate the bifunctional catalytic activity of NiFe layered double hydroxide in a rechargeable zinc-air battery. J Colloid Interface Sci 2024; 672:610-617. [PMID: 38861848 DOI: 10.1016/j.jcis.2024.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024]
Abstract
The development of a highly efficient, stable, and low-cost bifunctional catalyst is imperative for facilitating the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). However, significant challenges are involved in extending its applications to rechargeable zinc-air batteries. This study presents a bifunctional catalyst, Zr2ON2@NiFe layered double hydroxide (LDH), that was developed by utilizing a urea-glass route for synthesizing the Zr2ON2 precursor, followed by riveting NiFe LDH nanosheets using a hydrothermal method. Specifically, the vertical distribution of NiFe LDH on the Zr2ON2 surface ensures the maximization of the number of accessible active sites and interfacial catalysis of NiFe LDH. Notably, Zr2ON2@NiFe LDH demonstrates ORR and OER bifunctional electrocatalytic behavior and high stability owing to its heterostructure and composition. Furthermore, a rechargeable zinc-air battery using a Zr2ON2@NiFe LDH electrocatalyst as the air cathode demonstrated a high peak power density (172 mW cm-2) and galvanostatic charge-discharge cycle stability (5 mA cm-2 over 443 h). Thus, this study presents an efficient and cost-effective strategy for the design of bifunctional electrocatalysts.
Collapse
Affiliation(s)
- Xiaolin Hu
- School of Science, Chongqing Key Laboratory of New Energy Storage Materials and Devices, Chongqing University of Technology, Chongqing 400054, China.
| | - Wenping Tian
- School of Science, Chongqing Key Laboratory of New Energy Storage Materials and Devices, Chongqing University of Technology, Chongqing 400054, China
| | - Zhenkun Wu
- School of Science, Chongqing Key Laboratory of New Energy Storage Materials and Devices, Chongqing University of Technology, Chongqing 400054, China
| | - Xiang Li
- School of Science, Chongqing Key Laboratory of New Energy Storage Materials and Devices, Chongqing University of Technology, Chongqing 400054, China
| | - Yanhong Li
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Haozhi Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
4
|
Li J, Tian W, Li Q, Zhao S. Acidic Oxygen Evolution Reaction: Fundamental Understanding and Electrocatalysts Design. CHEMSUSCHEM 2024; 17:e202400239. [PMID: 38481084 DOI: 10.1002/cssc.202400239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/07/2024] [Indexed: 04/05/2024]
Abstract
Water electrolysis driven by "green electricity" is an ideal technology to realize energy conversion and store renewable energy into hydrogen. With the development of proton exchange membrane (PEM), water electrolysis in acidic media suitable for many situations with an outstanding advantage of high gas purity has attracted significant attention. Compared with hydrogen evolution reaction (HER) in water electrolysis, oxygen evolution reaction (OER) is a kinetic sluggish process that needs a higher overpotential. Especially in acidic media, OER process poses higher requirements for the electrocatalysts, such as high efficiency, high stability and low costs. This review focuses on the acidic OER electrocatalysis, reaction mechanisms, and critical parameters used to evaluate performance. Especially the modification strategies applied in the design and construction of new-type electrocatalysts are also summarized. The characteristics of traditional noble metal-based electrocatalysts and the noble metal-free electrocatalysts developed in recent decades are compared and discussed. Finally, the current challenges for the most promising acidic OER electrocatalysts are presented, together with a perspective for future water electrolysis.
Collapse
Affiliation(s)
- Jiao Li
- School of Materials Science and Engineering, Shijiazhuang Tiedao University, Shijiazhuang, 050043, P.R. China
| | - Weichen Tian
- School of Materials Science and Engineering, Shijiazhuang Tiedao University, Shijiazhuang, 050043, P.R. China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P.R. China
| | - Qi Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Shenlong Zhao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| |
Collapse
|
5
|
Lin Y, Dong Y, Wang X, Chen L. Electrocatalysts for the Oxygen Evolution Reaction in Acidic Media. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210565. [PMID: 36521026 DOI: 10.1002/adma.202210565] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/09/2022] [Indexed: 06/02/2023]
Abstract
The well-established proton exchange membrane (PEM)-based water electrolysis, which operates under acidic conditions, possesses many advantages compared to alkaline water electrolysis, such as compact design, higher voltage efficiency, and higher gas purity. However, PEM-based water electrolysis is hampered by the low efficiency, instability, and high cost of anodic electrocatalysts for the oxygen evolution reaction (OER). In this review, the recently reported acidic OER electrocatalysts are comprehensively summarized, classified, and discussed. The related fundamental studies on OER mechanisms and the relationship between activity and stability are particularly highlighted in order to provide an atomistic-level understanding for OER catalysis. A stability test protocol is suggested to evaluate the intrinsic activity degradation. Some current challenges and unresolved questions, such as the usage of carbon-based materials and the differences between the electrocatalyst performances in acidic electrolytes and PEM-based electrolyzers are also discussed. Finally, suggestions for the most promising electrocatalysts and a perspective for future research are outlined. This review presents a fresh impetus and guideline to the rational design and synthesis of high-performance acidic OER electrocatalysts for PEM-based water electrolysis.
Collapse
Affiliation(s)
- Yichao Lin
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| | - Yan Dong
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| | - Xuezhen Wang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| | - Liang Chen
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| |
Collapse
|
6
|
Eguiluz KI, Hernandez-Sanchez NK, Doria AR, O. S. Santos G, Salazar-Banda GR, Ponce de Leon C. Template-made tailored mesoporous Ti/SnO2-Sb2O5-IrO2 anodes with enhanced activity towards dye removal. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Frisch M, Laun J, Marquardt J, Arinchtein A, Bauerfeind K, Bernsmeier D, Bernicke M, Bredow T, Kraehnert R. Bridging experiment and theory: enhancing the electrical conductivities of soft-templated niobium-doped mesoporous titania films. Phys Chem Chem Phys 2021; 23:3219-3224. [PMID: 33534871 DOI: 10.1039/d0cp06544g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Theoretical calculations suggest a strong dependence of electrical conductivity and doping concentration in transition-metal doped titania. Herein, we present a combined theoretical and experimental approach for the prediction of relative phase stability and electrical conductivity in niobium-doped titania as model system. Our method paves the way towards the development of materials with improved electrical properties.
Collapse
Affiliation(s)
- Marvin Frisch
- Department of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 124, Berlin D-10623, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Sachse R, Pflüger M, Velasco-Vélez JJ, Sahre M, Radnik J, Bernicke M, Bernsmeier D, Hodoroaba VD, Krumrey M, Strasser P, Kraehnert R, Hertwig A. Assessing Optical and Electrical Properties of Highly Active IrO x Catalysts for the Electrochemical Oxygen Evolution Reaction via Spectroscopic Ellipsometry. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03800] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- René Sachse
- Federal Institute for Materials Research and Testing (BAM), Unter den Eichen 44-46, 12203 Berlin, Germany
- Faculty II Mathematics and Natural Sciences, Institute of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Mika Pflüger
- Physikalisch-Technische Bundesanstalt (PTB), Abbestraße 2-12, 10587 Berlin, Germany
| | - Juan-Jesús Velasco-Vélez
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
- Department of Heterogenous Reactions, Max Planck Institute for Chemical Energy Conversion, Mülheim and der Ruhr 45470, Germany
| | - Mario Sahre
- Federal Institute for Materials Research and Testing (BAM), Unter den Eichen 44-46, 12203 Berlin, Germany
| | - Jörg Radnik
- Federal Institute for Materials Research and Testing (BAM), Unter den Eichen 44-46, 12203 Berlin, Germany
| | - Michael Bernicke
- Faculty II Mathematics and Natural Sciences, Institute of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Denis Bernsmeier
- Faculty II Mathematics and Natural Sciences, Institute of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Vasile-Dan Hodoroaba
- Federal Institute for Materials Research and Testing (BAM), Unter den Eichen 44-46, 12203 Berlin, Germany
| | - Michael Krumrey
- Physikalisch-Technische Bundesanstalt (PTB), Abbestraße 2-12, 10587 Berlin, Germany
| | - Peter Strasser
- Faculty II Mathematics and Natural Sciences, Department of Chemistry, Technical University Berlin, 10623 Berlin, Germany
| | - Ralph Kraehnert
- Faculty II Mathematics and Natural Sciences, Institute of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Andreas Hertwig
- Federal Institute for Materials Research and Testing (BAM), Unter den Eichen 44-46, 12203 Berlin, Germany
| |
Collapse
|
9
|
Abbou S, Chattot R, Martin V, Claudel F, Solà-Hernandez L, Beauger C, Dubau L, Maillard F. Manipulating the Corrosion Resistance of SnO2 Aerogels through Doping for Efficient and Durable Oxygen Evolution Reaction Electrocatalysis in Acidic Media. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01084] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sofyane Abbou
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, 38000 Grenoble, France
| | - Raphaël Chattot
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, 38000 Grenoble, France
| | - Vincent Martin
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, 38000 Grenoble, France
| | - Fabien Claudel
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, 38000 Grenoble, France
| | - Lluís Solà-Hernandez
- Centre procédés, énergies renouvelables et systèmes énergétiques (PERSEE), MINES ParisTech, PSL University, CS 10207 rue Claude Daunesse, F-06904 Sophia Antipolis Cedex, France
| | - Christian Beauger
- Centre procédés, énergies renouvelables et systèmes énergétiques (PERSEE), MINES ParisTech, PSL University, CS 10207 rue Claude Daunesse, F-06904 Sophia Antipolis Cedex, France
| | - Laetitia Dubau
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, 38000 Grenoble, France
| | - Frédéric Maillard
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, 38000 Grenoble, France
| |
Collapse
|