1
|
Wu X, Du J, Gao Y, Wang H, Zhang C, Zhang R, He H, Lu GM, Wu Z. Progress and challenges in nitrous oxide decomposition and valorization. Chem Soc Rev 2024; 53:8379-8423. [PMID: 39007174 DOI: 10.1039/d3cs00919j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Nitrous oxide (N2O) decomposition is increasingly acknowledged as a viable strategy for mitigating greenhouse gas emissions and addressing ozone depletion, aligning significantly with the UN's sustainable development goals (SDGs) and carbon neutrality objectives. To enhance efficiency in treatment and explore potential valorization, recent developments have introduced novel N2O reduction catalysts and pathways. Despite these advancements, a comprehensive and comparative review is absent. In this review, we undertake a thorough evaluation of N2O treatment technologies from a holistic perspective. First, we summarize and update the recent progress in thermal decomposition, direct catalytic decomposition (deN2O), and selective catalytic reduction of N2O. The scope extends to the catalytic activity of emerging catalysts, including nanostructured materials and single-atom catalysts. Furthermore, we present a detailed account of the mechanisms and applications of room-temperature techniques characterized by low energy consumption and sustainable merits, including photocatalytic and electrocatalytic N2O reduction. This article also underscores the extensive and effective utilization of N2O resources in chemical synthesis scenarios, providing potential avenues for future resource reuse. This review provides an accessible theoretical foundation and a panoramic vision for practical N2O emission controls.
Collapse
Affiliation(s)
- Xuanhao Wu
- Department of Environmental Engineering, Zhejiang University, China Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, 310058, China.
| | - Jiaxin Du
- Department of Environmental Engineering, Zhejiang University, China Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, 310058, China.
| | - Yanxia Gao
- Department of Environmental Engineering, Zhejiang University, China Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, 310058, China.
| | - Haiqiang Wang
- Department of Environmental Engineering, Zhejiang University, China Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, 310058, China.
| | - Changbin Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Runduo Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | | | - Zhongbiao Wu
- Department of Environmental Engineering, Zhejiang University, China Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, 310058, China.
| |
Collapse
|
2
|
State-of-the-Art Review of Oxidative Dehydrogenation of Ethane to Ethylene over MoVNbTeOx Catalysts. Catalysts 2023. [DOI: 10.3390/catal13010204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Ethylene is mainly produced by steam cracking of naphtha or light alkanes in the current petrochemical industry. However, the high-temperature operation results in high energy demands, high cost of gas separation, and huge CO2 emissions. With the growth of the verified shale gas reserves, oxidative dehydrogenation of ethane (ODHE) becomes a promising process to convert ethane from underutilized shale gas reserves to ethylene at a moderate reaction temperature. Among the catalysts for ODHE, MoVNbTeOx mixed oxide has exhibited superior catalytic performance in terms of ethane conversion, ethylene selectivity, and/or yield. Accordingly, the process design is compact, and the economic evaluation is more favorable in comparison to the mature steam cracking processes. This paper aims to provide a state-of-the-art review on the application of MoVNbTeOx catalysts in the ODHE process, involving the origin of MoVNbTeOx, (post-) treatment of the catalyst, material characterization, reaction mechanism, and evaluation as well as the reactor design, providing a comprehensive overview of M1 MoVNbTeOx catalysts for the oxidative dehydrogenation of ethane, thus contributing to the understanding and development of the ODHE process based on MoVNbTeOx catalysts.
Collapse
|
3
|
Chen Y, Dang D, Yan B, Cheng Y. Nanocomposite catalysts of non-purified MoVNbTeOx with CeO2 or TiO2 for oxidative dehydrogenation of ethane. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Ivan ŞB, Urdă A, Marcu IC. Nickel oxide-based catalysts for ethane oxidative dehydrogenation: a review. CR CHIM 2022. [DOI: 10.5802/crchim.189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Wang C, Han Y, Tian M, Li L, Lin J, Wang X, Zhang T. Main-Group Catalysts with Atomically Dispersed In Sites for Highly Efficient Oxidative Dehydrogenation. J Am Chem Soc 2022; 144:16855-16865. [PMID: 36006855 DOI: 10.1021/jacs.2c04926] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transition metal oxides are well-known catalysts for oxidative dehydrogenation thanks to their excellent ability to activate alkanes. However, they suffer from an inferior alkene yield due to the trade-off between the conversion and selectivity induced by more reactive alkenes than alkanes, which obscures the optimization of catalysts. Herein, we attempt to overcome this challenge by activating a selective main-group indium oxide considered to be inactive for oxidative dehydrogenation in conventional wisdom. Atomically dispersed In sites with the local structure of [InOH]2+ anchored by substituting the protons of supercages in HY are enclosed to be active centers that enable the activation of ethane with a metal-normalized turnover number of almost one magnitude higher than those of their supported In2O3 counterparts. Furthermore, the structure of isolated [InOH]2+ sites could be stabilized by in situ formed H2O from the selective oxidation of hydrogen by In2O3 nanoparticles. As a result, the as-designed main-group In catalysts exhibit 80% ethene selectivity at 80% ethane conversion, thus achieving 60% ethene yield due to active isolated [InOH]2+ sites and selective In2O3 nanoparticles, outperforming state-of-the-art transition metal oxide catalysts. This study unlocks new opportunities for the utilization of main-group elements and could pave the way toward a more rational design of catalysts for highly efficient selective oxidation catalysis.
Collapse
Affiliation(s)
- Chaojie Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People's Republic of China.,University of Chinese Academy of Sciences, 19(A) Yuquan Road, Shijingshan District, Beijing 100049, People's Republic of China
| | - Yujia Han
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People's Republic of China.,University of Chinese Academy of Sciences, 19(A) Yuquan Road, Shijingshan District, Beijing 100049, People's Republic of China
| | - Ming Tian
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People's Republic of China
| | - Lin Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People's Republic of China
| | - Jian Lin
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People's Republic of China
| | - Xiaodong Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People's Republic of China
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People's Republic of China
| |
Collapse
|
6
|
Li D, Kong L, Fan X, Xie Z, Xiao X, Zhao Z. Porous Ni−Al−O Fabricated by a Facile Hydrothermal Method: Improved Catalytic Performance for the Oxidative Dehydrogenation of Ethane to Produce Ethylene. ChemistrySelect 2022. [DOI: 10.1002/slct.202201473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Dong Li
- Institute of Catalysis for Energy and Environment Shenyang Normal University Shenyang 110034 China
- State Key Laboratory of Heavy Oil Processing China University of Petroleum Beijing 102249 China
| | - Lian Kong
- Institute of Catalysis for Energy and Environment Shenyang Normal University Shenyang 110034 China
| | - Xiaoqiang Fan
- Institute of Catalysis for Energy and Environment Shenyang Normal University Shenyang 110034 China
| | - Zean Xie
- Institute of Catalysis for Energy and Environment Shenyang Normal University Shenyang 110034 China
| | - Xia Xiao
- Institute of Catalysis for Energy and Environment Shenyang Normal University Shenyang 110034 China
| | - Zhen Zhao
- Institute of Catalysis for Energy and Environment Shenyang Normal University Shenyang 110034 China
- State Key Laboratory of Heavy Oil Processing China University of Petroleum Beijing 102249 China
| |
Collapse
|
7
|
Oxidative Dehydrogenation of Ethane with CO2 over Mo/LDO Catalyst: The Active Species of Mo Controlled by LDO. Catalysts 2022. [DOI: 10.3390/catal12050493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
A series of the layered double oxides supported molybdenum oxide catalysts were synthesized and evaluated in the oxidative dehydrogenation of ethane with CO2 (CO2-ODHE). The 22.3 wt% Mo/LDO catalyst delivered a 92.3%selectivity to ethylene and a 7.9% ethane conversion at relatively low temperatures. The molybdenum oxide catalysts were fully characterized by XRD, BET, SEM, TEM, UV–vis, Raman TG, and XPS. Isolated [MoO4]2− dominated on the surface of the fresh 12.5 wt% Mo/LDO catalyst. With the increase of the Mo content, the Mo species transformed from [MoO4]2− to [Mo7O24]6− and [Mo8O26]4− on the 22.3 wt% and 30.1 wt% Mo/LDO catalysts, respectively. The redox mechanism was proposed and three Mo species including [MoO4]2−, [Mo7O24]6−, and [Mo8O26]4− showed quite different functions in the CO2-ODHE reaction: [MoO4]2−, with tetrahedral structure, preferred the non-selective pathway; [Mo7O24]6−, with an octahedral construction, promoted the selective pathway; and the existence of [Mo8O26]4− reduced the ability to activate ethane. This work provides detailed insights to further understand the relationship between structure–activity and the role of surface Mo species as well as their aggregation state in CO2-ODHE.
Collapse
|
8
|
Near 100% ethene selectivity achieved by tailoring dual active sites to isolate dehydrogenation and oxidation. Nat Commun 2021; 12:5447. [PMID: 34521830 PMCID: PMC8440631 DOI: 10.1038/s41467-021-25782-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 08/24/2021] [Indexed: 11/13/2022] Open
Abstract
Prohibiting deep oxidation remains a challenging task in oxidative dehydrogenation of light alkane since the targeted alkene is more reactive than parent substrate. Here we tailor dual active sites to isolate dehydrogenation and oxidation instead of homogeneously active sites responsible for these two steps leading to consecutive oxidation of alkene. The introduction of HY zeolite with acid sites, three-dimensional pore structure and supercages gives rise to Ni2+ Lewis acid sites (LAS) and NiO nanoclusters confined in framework wherein catalytic dehydrogenation of ethane occurs on Ni2+ LAS resulting in the formation of ethene and hydrogen while NiO nanoclusters with decreased oxygen reactivity are responsible for selective oxidation of hydrogen rather than over-oxidizing ethene. Such tailored strategy achieves near 100% ethene selectivity and constitutes a promising basis for highly selective oxidation catalysis beyond oxidative dehydrogenation of light alkane. It is important but challenging to prohibit deep oxidation of alkene in oxidative dehydrogenation of light alkane. Here, dual active sites are tailored to isolate dehydrogenation and oxidation thus achieving superior ethene selectivity.
Collapse
|
9
|
Guo M, Feng K, Wang Y, Yan B. Unveiling the Role of Active Oxygen Species in Oxidative Dehydrogenation of Ethane with CO
2
over NiFe/CeO
2. ChemCatChem 2021. [DOI: 10.1002/cctc.202100333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Man Guo
- Department of Chemical Engineering Tsinghua University Beijing 100084 P. R. China
| | - Kai Feng
- Department of Chemical Engineering Tsinghua University Beijing 100084 P. R. China
| | - Yaning Wang
- Department of Chemical Engineering Tsinghua University Beijing 100084 P. R. China
| | - Binhang Yan
- Department of Chemical Engineering Tsinghua University Beijing 100084 P. R. China
| |
Collapse
|
10
|
Ivan ŞB, Fechete I, Papa F, Marcu IC. Ethane oxydehydrogenation over TiP2O7-supported NiO catalysts. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
De S, Ould-Chikh S, Aguilar A, Hazemann JL, Zitolo A, Ramirez A, Telalovic S, Gascon J. Stable Cr-MFI Catalysts for the Nonoxidative Dehydrogenation of Ethane: Catalytic Performance and Nature of the Active Sites. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05170] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sudipta De
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Samy Ould-Chikh
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Antonio Aguilar
- Institut Neel, UPR 2940 CNRS − Université Grenoble Alpes, F-38000 Grenoble, France
| | - Jean-Louis Hazemann
- Institut Neel, UPR 2940 CNRS − Université Grenoble Alpes, F-38000 Grenoble, France
| | - Andrea Zitolo
- Synchrotron SOLEIL, L’orme des Merisiers, BP 48 Saint Aubin, 91192 Gif-sur-Yvette, France
| | - Adrian Ramirez
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Selvedin Telalovic
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Jorge Gascon
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| |
Collapse
|
12
|
Zhang J, Yang J, Tian J, Liu H, Li X, Fang W, Hu X, Xia C, Chen J, Huang Z. Reductive amination of bio-based 2-hydroxytetrahydropyran to 5-Amino-1-pentanol over nano-Ni–Al 2O 3 catalysts. NEW J CHEM 2021. [DOI: 10.1039/d0nj04962j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
5-Amino-1-pentanol was efficiently synthesized by reductive amination of bio-based 2-hydroxytetrahydropyran with a high yield over stable nano-Ni–Al2O3 catalysts.
Collapse
|
13
|
Zhou Y, Wei F, Lin J, Li L, Li X, Qi H, Pan X, Liu X, Huang C, Lin S, Wang X. Sulfate-Modified NiAl Mixed Oxides as Effective C–H Bond-Breaking Agents for the Sole Production of Ethylene from Ethane. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02347] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yanliang Zhou
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Fenfei Wei
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, P. R. China
| | - Jian Lin
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Lin Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Xiaoyu Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Haifeng Qi
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiaoli Pan
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Xiaoyan Liu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Chuande Huang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Sen Lin
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, P. R. China
| | - Xiaodong Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| |
Collapse
|
14
|
Xu X, Kumar Megarajan S, Xia X, Toghan A, Feldhoff A, Zhang Y, Jiang H. Effect of reduction temperature on the structure and catalytic performance of mesoporous Ni–Fe–Al 2O 3 in oxidative dehydrogenation of ethane. NEW J CHEM 2020. [DOI: 10.1039/d0nj02618b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effects of reduction temperature on the structure and catalytic performance of mesoporous Ni–Fe–Al2O3 are investigated for the first time.
Collapse
Affiliation(s)
- Xia Xu
- Key Laboratory of Biofuels
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao 266101
- China
| | - Suresh Kumar Megarajan
- Key Laboratory of Biofuels
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao 266101
- China
| | - Xuefa Xia
- Key Laboratory of Biofuels
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao 266101
- China
| | - Arafat Toghan
- Chemistry Department
- Faculty of Science
- South Valley University
- Qena 83523
- Egypt
| | - Armin Feldhoff
- Institute of Physical Chemistry and Electrochemistry
- Leibniz University of Hannover
- Hannover 30167
- Germany
| | - Yan Zhang
- Key Laboratory of Biofuels
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao 266101
- China
| | - Heqing Jiang
- Key Laboratory of Biofuels
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao 266101
- China
| |
Collapse
|