1
|
Zhao Y, Zheng L, Chen Y, Liu Y, Huang S, Li S. Degradation of thiamphenicol by La-Fe 2O 3/DBD/HCP synergistic catalytic system. J Environ Sci (China) 2025; 154:805-819. [PMID: 40049917 DOI: 10.1016/j.jes.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 05/13/2025]
Abstract
In this study, a highly efficient La-Fe2O3/dielectric barrier discharge (DBD)/honeycomb ceramic plate synergistic catalytic system was successfully constructed by using modified iron oxide (Fe2O3) catalyst coating assisted DBD plasma, and the prepared catalytic coating was fully characterized by various techniques. The results indicate that the lanthanum (La) is efficiently and uniformly doped in Fe2O3, and the modified La-Fe2O3 catalyst exhibited a better photocatalytic performance. The overuse of Thiamphenicol (TAP), as a typical chloramphenicol antibiotic, has led to its accumulation in the aquatic environment. Accordingly, TAP was selected as the target contaminant to evaluate the catalytic activity of the synergistic system. The results confirmed that the catalytic ability of the synergistic catalytic system was significantly improved, and the data showed that the degradation rate of the synergistic system reached 99.1% under the same conditions compared with 68.2% for the single DBD plasma, which effectively improved low energy efficiency limitations of the single DBD technology. Through quantitative measurements of the concentrations of dissolved ozone (O3) and hydrogen peroxide (H2O2) in the system and radical trapping experiments, combined with emission spectroscopy, the mechanism of synergistic system degradation of TAP was analyzed. The intermediates in the degradation process were characterized by high-resolution mass spectrometry, and the degradation pathway of TAP was proposed based on the analysis of the intermediates and their combination with theoretical calculations. This study presents a theoretical basis for the improvement of DBD technology and a technical guide for the removal process of antibiotics from industrial wastewater.
Collapse
Affiliation(s)
- Yimo Zhao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Lijiao Zheng
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Yongyang Chen
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yuan Liu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Shimeng Huang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Shanping Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
2
|
Huang Q, Zhao Y, Li Y. Introducing Oxygen Vacancies into a WO 3 Photoanode through NaH 2PO 2 Treatment for Efficient Water Splitting. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:23845-23852. [PMID: 39468928 DOI: 10.1021/acs.langmuir.4c02870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
WO3, with a high light absorption capacity and a suitable band structure, is considered a promising photoanode material for photoelectrochemical water splitting. However, the poor photoinduced electron-hole separation efficiency limits its application. Herein, we report an effective strategy to suppress electron-hole recombination by introducing oxygen vacancies (OV) on the surface of a WO3 photoanode through NaH2PO2 treatment. An OV-enriched amorphous surface layer with a thickness of 4 nm is formed after NaH2PO2 treatment, which increases the charge carrier density and enlarges the electrochemical surface area of the photoanode. The charge separation and surface injection efficiencies are both improved after NaH2PO2 treatment, and the charge transfer process of the photoanode is accelerated consequently. The current density of the modified WO3 photoanode reaches 0.96 mA cm-2 at 1.23 V.
Collapse
Affiliation(s)
- Qiuyang Huang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yicheng Zhao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yongdan Li
- Department of Chemical and Metallurgical Engineering, Aalto University, Kemistintie 1, FI-00076 Aalto, Finland
| |
Collapse
|
3
|
Wang Y, Liu J, Xu J, Hao X. Effect of acid treatment on boosting the photoelectrochemical performance of doped and codoped α-Fe 2O 3 photoanodes. RSC Adv 2023; 13:16765-16772. [PMID: 37284185 PMCID: PMC10240174 DOI: 10.1039/d3ra01576a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/21/2023] [Indexed: 06/08/2023] Open
Abstract
Acid treatment of Ti-doped α-Fe2O3 photoanode can reduce the onset potential and promote the photocurrent density for photoelectrochemical (PEC) water splitting reaction. However, the inner mechanism of how this occurs has not yet been clarified. This report compares the effect of HCl hydrothermal treatment on α-Fe2O3 photoanodes doped with Ge, Pt, Ti, and Sn or codoped with TiGe, TiPt, and TiSn. The findings show that the promotion effect of HCl hydrothermal treatment was far less significant on the Ge-, Pt-, and Sn-doped α-Fe2O3 than on the Ti-doped one. In contrast, the codoped photoanodes could realize a lift in the photocurrent of up to 39% at 1.23 VRHE (versus the reversible hydrogen electrode) and a reduction in the potential onset by ∼60 mV after HCl hydrothermal treatment. Anatase TiO2 was detected by Raman spectroscopy on the Ti-doped α-Fe2O3 with adequate treatment in HCl solution. Thus, the performance promotion by acid treatment was ascribed to the surface-concentrated Ti-O bonds acting as a passivation layer that could increase the charge-capture capacity and reduce the charge-transfer resistance, as demonstrated by the potential-modulated electrochemical impedance spectroscopy results. HCl treatment of the in situ-doped α-Fe2O3 and an excessive treatment time for the ex situ-doped α-Fe2O3 caused an inhibition in the PEC performance, which could be attributed to the adverse effect of lattice defects induced by acid corrosion. The application scope of HCl treatment on the doped α-Fe2O3 was determined by revealing its working mechanism.
Collapse
Affiliation(s)
- Yujie Wang
- School of Materials and Chemical Engineering, Chuzhou University Chuzhou Anhui 239000 China
| | - Jinlong Liu
- School of Materials and Chemical Engineering, Chuzhou University Chuzhou Anhui 239000 China
| | - Jie Xu
- School of Materials and Chemical Engineering, Chuzhou University Chuzhou Anhui 239000 China
| | - Xiaobin Hao
- School of Materials and Chemical Engineering, Chuzhou University Chuzhou Anhui 239000 China
| |
Collapse
|
4
|
Wang P, Ding C, Li D, Cao Y, Li Z, Wang X, Shi J, Li C. Coupling effect between hole storage and interfacial charge transfer over ultrathin CoPi-modified hematite photoanodes. Dalton Trans 2022; 51:9247-9255. [PMID: 35695236 DOI: 10.1039/d2dt00765g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Understanding the functionality of the modification layer in regulating the charge transfer process at the semiconductor/electrolyte interface is of great significance to the rational design of photoelectrocatalytic water oxidation systems. Herein, by systematically investigating and comparing the charge transfer kinetics behaviors over ferrihydrite (Fh)- and cobalt phosphate (CoPi)-modified hematite (Fe2O3) photoanodes, we unveiled the essential relation between photocurrent enhancement and the charge transfer process. With the hole-storage material Fh as a reference, it was found that CoPi demonstrates high hole-storage capacity at a low bias region (<1.0 V vs. RHE) due to the effective release of Fermi level pinning. Afterwards, the stored holes would be timely injected into the electrolyte for water oxidation, caused by the enhanced charge separation in the presence of CoPi. In contrast, the decoration of Fh can only slightly passivate the surface states and promote hole injection in the high potential region. Subsequently, superior hole-storage capacity in the low-potential region is recognized as a crucial factor for photocurrent enhancement. These combined results provide new insights into the understanding of interfacial charge transfer kinetics.
Collapse
Affiliation(s)
- Pengpeng Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Zhongshan Road 457, Dalian 116023, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunmei Ding
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Zhongshan Road 457, Dalian 116023, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongfeng Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Zhongshan Road 457, Dalian 116023, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yimeng Cao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Zhongshan Road 457, Dalian 116023, China.
| | - Zheng Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Zhongshan Road 457, Dalian 116023, China.
| | - Xiuli Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Zhongshan Road 457, Dalian 116023, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingying Shi
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Zhongshan Road 457, Dalian 116023, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Can Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Zhongshan Road 457, Dalian 116023, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Ai M, Li X, Pan L, Xu X, Yang J, Zou JJ, Zhang X. Surface states modulation of hematite photoanodes for enhancing photoelectrochemical catalysis. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Wang L, Cui X, Xu Y, Anpo M, Fang Y. Sustainable photoanode for water oxidation reactions: from metal-based to metal-free materials. Chem Commun (Camb) 2022; 58:10469-10479. [DOI: 10.1039/d2cc03803j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sunlight affords an inexhaustible and primary energy for Earth. A photoelectrochemical system can efficiently harvest solar energy and convert it into chemicals. However, sophisticated processes and expensive raw materials are...
Collapse
|
7
|
Rong J, Wang Z, Lv J, Fan M, Chong R, Chang Z. Ni(OH)2 quantum dots as a stable cocatalyst modified α-Fe2O3 for enhanced photoelectrochemical water-splitting. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(21)63829-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
8
|
Zhao Z, Liu G, Zhu Y, Gao H, Li F. A semiconductor/molecular catalyst hybrid photoanode with FeOOH as an electron transfer relay. Chem Asian J 2021; 16:1745-1749. [PMID: 34002952 DOI: 10.1002/asia.202100403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/14/2021] [Indexed: 11/09/2022]
Abstract
A Fe2 O3 /FeOOH/poly-Ru(bda)(vpy) (bda = 2,2'-bipyridine-6,6'-dicarboxylate,vpy = 4-vinylpyridine) photoanode has been fabricated by electropolymerization of molecular Ru(bda)(vpy) catalyst on FeOOH modified Fe2 O3 , in which a thin layer of FeOOH replicates the role of tyrosine residue in PSII as an efficient electron transfer mediator. The ternary hybrid photoanode produced a 2.4 times higher photocurrent density than that of previously reported Fe2 O3 /poly-Ru(bda)(vpy) under AM 1.5 G illumination and displayed a negative shift on the onset potential by 100 mV. In addition, the Fe2 O3 /FeOOH/poly-Ru(bda)(vpy) exhibited long-term stability for at least 10 h with a Faraday efficiency of ∼96%. The high performance shown here was attributed to the improved charge separation between excited semiconductor and the catalyst caused by FeOOH mediated electron transfer on the electrode surface.
Collapse
Affiliation(s)
- Zhifeng Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology (DUT), 116024, Dalian, P. R. China
| | - Guoquan Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology (DUT), 116024, Dalian, P. R. China
| | - Yong Zhu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology (DUT), 116024, Dalian, P. R. China
| | - Hua Gao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology (DUT), 116024, Dalian, P. R. China
| | - Fei Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology (DUT), 116024, Dalian, P. R. China
| |
Collapse
|
9
|
A hybrid CoOOH-rGO/Fe2O3 photoanode with spatial charge separation and charge transfer for efficient photoelectrochemical water oxidation. J Catal 2021. [DOI: 10.1016/j.jcat.2021.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Xiao J, Peng L, Gao L, Zhong J, Huang Z, Yuan E, Srinivasapriyan V, Zhou SF, Zhan G. Improving light absorption and photoelectrochemical performance of thin-film photoelectrode with a reflective substrate. RSC Adv 2021; 11:16600-16607. [PMID: 35479178 PMCID: PMC9031256 DOI: 10.1039/d1ra02826j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 04/29/2021] [Indexed: 11/21/2022] Open
Abstract
The charge separation/transport efficiency is relatively high in thin-film hematite photoanodes in which the distance for charge transport is short, but simultaneously the high loss of light absorption due to transmission is confronted. To increase light absorption in thin-film Fe2O3:Ti, commercial substrates such as Cu foil, Ag foil, and a mirror are adopted acting as back-reflectors and individually integrated with the Fe2O3:Ti electrode. The promotion effect of the commercial back-reflectors on the light absorption efficiency and photoelectrochemical (PEC) performance of the hydrothermally prepared Fe2O3:Ti electrodes with a variety of film thicknesses is investigated. As a result, Ag foil and the mirror show favorable and equal efficacy while the promoting effect of Cu foil is limited. In addition, the photocurrent increment achieved by the Ag back-reflector decreases linearly along with the logarithmic of the film thickness and the optimized film thickness of the Fe2O3:Ti electrode is decreased from 520 to 290 nm. The high durability of Ag foil in the alkaline electrolyte during solar light irradiation is demonstrated. Furthermore, the reflective substrate also shows a promotion effect on the BiVO4 photoanode and CuBi2O4 photocathode, as well as the unbiased photocurrent from a tandem cell constituted by TiO2 and CuBi2O4. The charge separation/transport efficiency is relatively high in thin-film hematite photoanodes in which the distance for charge transport is short, but simultaneously the high loss of light absorption due to transmission is confronted.![]()
Collapse
Affiliation(s)
- Jingran Xiao
- College of Chemical Engineering, Huaqiao University 668 Jimei Blvd Xiamen Fujian 361021 P. R. China
| | - Lingling Peng
- College of Chemical Engineering, Huaqiao University 668 Jimei Blvd Xiamen Fujian 361021 P. R. China
| | - Le Gao
- College of Chemical Engineering, Huaqiao University 668 Jimei Blvd Xiamen Fujian 361021 P. R. China
| | - Jun Zhong
- College of Chemical Engineering, Huaqiao University 668 Jimei Blvd Xiamen Fujian 361021 P. R. China
| | - Zhongliang Huang
- College of Chemical Engineering, Huaqiao University 668 Jimei Blvd Xiamen Fujian 361021 P. R. China
| | - Enxian Yuan
- School of Chemistry and Chemical Engineering, Yangzhou University Yangzhou Jiangsu 225002 P. R. China
| | - Vijayan Srinivasapriyan
- Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 China
| | - Shu-Feng Zhou
- College of Chemical Engineering, Huaqiao University 668 Jimei Blvd Xiamen Fujian 361021 P. R. China
| | - Guowu Zhan
- College of Chemical Engineering, Huaqiao University 668 Jimei Blvd Xiamen Fujian 361021 P. R. China
| |
Collapse
|
11
|
Li Y, Zhang R, Li J, Liu J, Miao Y, Guo J, Shao M. TiO2/CuPc/NiFe-LDH photoanode for efficient photoelectrochemical water splitting. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.09.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Asha K, Satsangi VR, Shrivastav R, Kant R, Dass S. Effect of morphology and impact of the electrode/electrolyte interface on the PEC response of Fe 2O 3 based systems - comparison of two preparation techniques. RSC Adv 2020; 10:42256-42266. [PMID: 35516748 PMCID: PMC9057922 DOI: 10.1039/d0ra07870k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/09/2020] [Indexed: 11/21/2022] Open
Abstract
The present study is a comparative account of Fe2O3 based photoelectrodes prepared by two different techniques, namely spray pyrolysis and electrochemical deposition, followed by photoelectrochemical analysis at pH 13 (highly alkaline) and pH 8 (near neutral) in 0.1 M NaOH solution for solar hydrogen generation. The study also investigates the influence of morphology at the semiconductor electrode/electrolyte interface along with quantitative determination of the morphological parameters of the rough electrode surface affecting the photoelectrochemical response using power spectral density analysis. Studies revealed that the Fe2O3 sample (E_100cy) prepared with 100 cycles of electrochemical deposition showed the highest photocurrent density of 2.37 mA cm-2 and 1.18 mA cm-2 at 1 V vs. SCE at pH 13 and 8 respectively. Power spectral density analysis exhibited that E_100cy possesses smallest surface features contributing to the PEC response with a lower cut off length scale of 17.23, upper cut off length scale of 150.45, maximum fractal dimension of 2.62 and maximum average rms roughness of 17.52 nm, offering the maximum surface area for charge transfer reactions at the electrode/electrolyte interface. The sample E_100cy exhibited the highest ABPE of 1.29% and IPCE of 37.5%.
Collapse
Affiliation(s)
- Kumari Asha
- Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute Dayalbagh Agra 282005 India
| | - Vibha Rani Satsangi
- Department of Physics & Computer Science, Faculty of Science, Dayalbagh Educational Institute Dayalbagh Agra 282005 India
| | - Rohit Shrivastav
- Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute Dayalbagh Agra 282005 India
| | - Rama Kant
- Department of Chemistry, University of Delhi Delhi 110007 India
| | - Sahab Dass
- Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute Dayalbagh Agra 282005 India
| |
Collapse
|
13
|
Hong DH, Reddy DA, Reddy KAJ, Gopannagari M, Kumar DP, Kim TK. Synergetic catalytic behavior of dual metal-organic framework coated hematite photoanode for photoelectrochemical water splitting performance. J Catal 2020. [DOI: 10.1016/j.jcat.2020.09.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Xiao J, Fan L, Huang Z, Zhong J, Zhao F, Xu K, Zhou SF, Zhan G. Functional principle of the synergistic effect of co-loaded Co-Pi and FeOOH on Fe2O3 photoanodes for photoelectrochemical water oxidation. CHINESE JOURNAL OF CATALYSIS 2020. [DOI: 10.1016/s1872-2067(20)63618-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|