1
|
Ocansey E, Sala O, Kamm M, Joost M, Bokern S, Rominger F, Hashmi ASK, Mormul J, Schaub T. Mn(III) O^N^O Complexes as Water-tolerant and Environmentally Benign Catalysts for Polyurethane Foam Synthesis. Chemistry 2023:e202303736. [PMID: 38133651 DOI: 10.1002/chem.202303736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 12/23/2023]
Abstract
Polyurethanes are synthesized on industrial scale by the reaction of diisocyanates with diols in the presence of catalysts which are commonly based on tin complexes and amines. However, due to the toxicity and volatility of these tin catalysts and amines, there is the need to develop new catalysts that are more environmentally benign. Herein, we report the synthesis of O^N^O pincer-ligated Mn(III) and Fe(III) complexes that serve as suitable catalysts for urethane formation and are stable to hydrolysis as predicted by computations and observed experimentally. The O^N^O pincer scaffold is vital to the activity of these catalysts, simultaneously ensuring increased solubility in the reaction medium as well as providing a stable framework upon dissociation of co-ligands in the catalytic cycle. In silico mechanistic investigations for urethane formation show that the stabilization of active species in square-planar geometries enabled by these O^N^O ligands permit the simultaneous coordination of alcohol and isocyanate in suitable configuration at the metal center.
Collapse
Affiliation(s)
- Edward Ocansey
- Catalysis Research Laboratory (CaRLa), University of Heidelberg University, Im Neuenheimer Feld 584, 69120, Heidelberg, Germany
| | - Oliver Sala
- BASF SE, Carl-Bosch-Straße 38, 67056, Ludwigshafen, Germany
| | - Marina Kamm
- BASF Polyurethanes GmbH, Elastogranstr. 60, 49448, Lemfoerde, Germany
| | | | - Stefan Bokern
- BASF Polyurethanes GmbH, Elastogranstr. 60, 49448, Lemfoerde, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - A Stephen K Hashmi
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Jaroslaw Mormul
- Catalysis Research Laboratory (CaRLa), University of Heidelberg University, Im Neuenheimer Feld 584, 69120, Heidelberg, Germany
- BASF SE, Carl-Bosch-Straße 38, 67056, Ludwigshafen, Germany
| | - Thomas Schaub
- Catalysis Research Laboratory (CaRLa), University of Heidelberg University, Im Neuenheimer Feld 584, 69120, Heidelberg, Germany
- BASF SE, Carl-Bosch-Straße 38, 67056, Ludwigshafen, Germany
| |
Collapse
|
2
|
Cui CX, Peng J, Jiang J. Theoretical Study on the Mechanism of Cobalt-Catalyzed C-O Silylation and Stannylation. ACS OMEGA 2023; 8:23791-23798. [PMID: 37426225 PMCID: PMC10324068 DOI: 10.1021/acsomega.3c02177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023]
Abstract
Organosilicon and organotin compounds have been widely used in many fields, such as organic synthesis, materials science, and biochemistry, because of their unique physical and electronic properties. Recently, two novel compounds containing C-Si or C-Sn bonds have been synthesized. These compounds can be used for late modification of drug-like molecules such as probenecid, duloxetine, and fluoxetine derivatives. However, the detailed reaction mechanisms and the influencing factors that determine selectivity are still unclear. Moreover, several questions remain that are valuable to investigate further, such as (1) the influence of the solvent and the lithium salt on the reaction of the Si/Sn-Zn reagent, (2) the stereoselective functionalization of C-O bonds, and (3) the differences between silylation and stannylation. In the current study, we have explored the above issues with density functional theory and have found that stereoselectivity was most likely caused by the oxidative addition of cobalt to the C-O bond of alkenyl acetate with chelation assistance and that transmetalation was most likely the rate-determining step. For Sn-Zn reagents, the transmetalation was achieved by anion and cation pairs, whereas for Si-Zn reagents, the process was facilitated by Co-Zn complexes.
Collapse
Affiliation(s)
- Cheng-Xing Cui
- School
of Chemistry and Chemical Engineering, Institute of Computational
Chemistry, Henan Institute of Science and
Technology, Xinxiang, Henan 453003, P. R. China
- ZhengZhou
JiShu Institute of AI Science, Zhengzhou, Henan 451162, P. R. China
| | - Jiali Peng
- School
of Chemistry and Chemical Engineering, Institute of Computational
Chemistry, Henan Institute of Science and
Technology, Xinxiang, Henan 453003, P. R. China
- Engineering
Research Center of Organosilicon Compounds & Materials, Ministry
of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Jun Jiang
- ZhengZhou
JiShu Institute of AI Science, Zhengzhou, Henan 451162, P. R. China
- Hefei
National Laboratory for Physical Sciences at the Microscale, Collaborative
Innovation Center of Chemistry for Energy Materials, School of Chemistry
and Materials Science, University of Science
and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
3
|
Study of the Effect of PGDA Solvent on Film Formation and Curing Process of Two-Component Waterborne Polyurethane Coatings by FTIR Tracking. COATINGS 2020. [DOI: 10.3390/coatings10050461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Waterborne polyurethane coatings were prepared using polyhydroxyacrylate dispersion, polyisocyanate, and propylene glycol diacetate (PGDA). The rate of reaction between hydroxyl and NCO groups in film formation and curing processes was studied by FTIR. The influence of PGDA amount on film formation and curing was also studied. Results showed that PGDA content had a significant effect on the curing process. With less than 10% PGDA, the role of PGDA was more to assist diffusion of polyhydroxyacrylate and polyisocyanate resin droplets. This promoted the reaction between hydroxyl groups and NCO. With more than 10% PGDA, its effect as a solvent was more and it inhibited the reaction between hydroxyl and NCO groups. When the amount of PGDA was about 10%, the synergy between both the roles promoted the crosslinking and curing reactions. The extent of the curing reaction of NCO was more than 70% in 4 h, which was significantly higher, compared with that of about 30% without PGDA. The good applicability and appearance of the waterborne polyurethane coating prepared in this study were verified for the application to carbon fiber metro vehicles.
Collapse
|