1
|
Chen J, Li Z, Tan W, Xie Y, Cao J, Zhang Q, Ning P, Hao J. Facilely Fabricated Single-Site Pt δ+-O(OH) x- Species Associated with Alkali on Zirconia Exhibiting Superior Catalytic Oxidation Reactivity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12685-12696. [PMID: 38959026 DOI: 10.1021/acs.est.4c00725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Fabrication of robust isolated atom catalysts has been a research hotspot in the environment catalysis field for the removal of various contaminants, but there are still challenges in improving the reactivity and stability. Herein, through facile doping alkali metals in Pt catalyst on zirconia (Pt-Na/ZrO2), the atomically dispersed Ptδ+-O(OH)x- associated with alkali metal via oxygen bridge was successfully fabricated. This novel catalyst presented remarkably higher CO and hydrocarbon (HCs: C3H8, C7H8, C3H6, and CH4) oxidation activity than its counterpart (Pt/ZrO2). Systematically direct and solid evidence from experiments and density functional theory calculations demonstrated that the fabricated electron-rich Ptδ+-O(OH)x- related to Na species rather than the original Ptδ+-O(OH)x-, serving as the catalytically active species, can readily react with CO adsorbed on Ptδ+ to produce CO2 with significantly decreasing energy barrier in the rate-determining step from 1.97 to 0.93 eV. Additionally, owing to the strongly adsorbed and activated water by Na species, those fabricated single-site Ptδ+-O(OH)x- linked by Na species could be easily regenerated during the oxidation reaction, thus considerably boosting its oxidation reactivity and durability. Such facile construction of the alkali ion-linked active hydroxyl group was also realized by Li and K modification which could guide to the design of efficient catalysts for the removal of CO and HCs from industrial exhaust.
Collapse
Affiliation(s)
- Jianjun Chen
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- National Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhiyu Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- National Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming University of Science and Technology, Kunming 650500, China
| | - Wei Tan
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yu Xie
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- National Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming University of Science and Technology, Kunming 650500, China
| | - Jinyan Cao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- National Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming University of Science and Technology, Kunming 650500, China
| | - Qiulin Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- National Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming University of Science and Technology, Kunming 650500, China
| | - Ping Ning
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- National Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming University of Science and Technology, Kunming 650500, China
| | - Jiming Hao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Jiang L, Li K, Porter WN, Wang H, Li G, Chen JG. Role of H 2O in Catalytic Conversion of C 1 Molecules. J Am Chem Soc 2024; 146:2857-2875. [PMID: 38266172 DOI: 10.1021/jacs.3c13374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Due to their role in controlling global climate change, the selective conversion of C1 molecules such as CH4, CO, and CO2 has attracted widespread attention. Typically, H2O competes with the reactant molecules to adsorb on the active sites and therefore inhibits the reaction or causes catalyst deactivation. However, H2O can also participate in the catalytic conversion of C1 molecules as a reactant or a promoter. Herein, we provide a perspective on recent progress in the mechanistic studies of H2O-mediated conversion of C1 molecules. We aim to provide an in-depth and systematic understanding of H2O as a promoter, a proton-transfer agent, an oxidant, a direct source of hydrogen or oxygen, and its influence on the catalytic activity, selectivity, and stability. We also summarize strategies for modifying catalysts or catalytic microenvironments by chemical or physical means to optimize the positive effects and minimize the negative effects of H2O on the reactions of C1 molecules. Finally, we discuss challenges and opportunities in catalyst design, characterization techniques, and theoretical modeling of the H2O-mediated catalytic conversion of C1 molecules.
Collapse
Affiliation(s)
- Lei Jiang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Kongzhai Li
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
- Southwest United Graduate School, Kunming 650000, Yunnan, China
| | - William N Porter
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Hua Wang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Gengnan Li
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Jingguang G Chen
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
3
|
Deng Y, Fu L, Song W, Ouyang L, Yuan S. Transition metal and Pr co-doping induced oxygen vacancy in Pd/CeO2 catalyst boosts low-temperature CO oxidation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
4
|
Xie S, Liu L, Lu Y, Wang C, Cao S, Diao W, Deng J, Tan W, Ma L, Ehrlich SN, Li Y, Zhang Y, Ye K, Xin H, Flytzani-Stephanopoulos M, Liu F. Pt Atomic Single-Layer Catalyst Embedded in Defect-Enriched Ceria for Efficient CO Oxidation. J Am Chem Soc 2022; 144:21255-21266. [DOI: 10.1021/jacs.2c08902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Shaohua Xie
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, Florida 32816, United States
| | - Liping Liu
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Yue Lu
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Chunying Wang
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Sufeng Cao
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Weijian Diao
- Department of Chemical and Biological Engineering, Villanova University, Villanova, Pennsylvania 19085, United States
| | - Jiguang Deng
- College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
| | - Wei Tan
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, Florida 32816, United States
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment; Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, China
| | - Lu Ma
- National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Steven N. Ehrlich
- National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Yaobin Li
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yan Zhang
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Kailong Ye
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, Florida 32816, United States
| | - Hongliang Xin
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | | | - Fudong Liu
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, Florida 32816, United States
| |
Collapse
|
5
|
Deng Y, Liu S, Fu L, Yuan Y, Zhao A, Wang D, Zheng H, Ouyang L, Yuan S. Crystal plane induced metal-support interaction in Pd/Pr-CeO2 catalyst boosts H2O-assisted CO oxidation. J Catal 2022. [DOI: 10.1016/j.jcat.2022.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Hu Y, Liu X, Zou Y, Xie H, Zhu T. Nature of support plays vital roles in H2O promoted CO oxidation over Pt catalysts. J Catal 2022. [DOI: 10.1016/j.jcat.2022.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Ren Z, Ruan L, Yin L, Akkiraju K, Giordano L, Liu Z, Li S, Ye Z, Li S, Yang H, Wang Y, Tian H, Liu G, Shao-Horn Y, Han G. Surface Oxygen Vacancies Confined by Ferroelectric Polarization for Tunable CO Oxidation Kinetics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202072. [PMID: 35580350 DOI: 10.1002/adma.202202072] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Surface oxygen vacancies have been widely discussed to be crucial for tailoring the activity of various chemical reactions from CO, NO, to water oxidation by using oxide-supported catalysts. However, the real role and potential function of surface oxygen vacancies in the reaction remains unclear because of their very short lifetime. Here, it is reported that surface oxygen vacancies can be well confined electrostatically for a polarization screening near the perimeter interface between Pt {111} nanocrystals and the negative polar surface (001) of ferroelectric PbTiO3. Strikingly, such a catalyst demonstrates a tunable catalytic CO oxidation kinetics from 200 °C to near room temperature by increasing the O2 gas pressure, accompanied by the conversion curve from a hysteresis-free loop to one with hysteresis. The combination of reaction kinetics, electronic energy loss spectroscopy (EELS) analysis, and density functional theory (DFT) calculations, indicates that the oxygen vacancies stabilized by the negative polar surface are the active sites for O2 adsorption as a rate-determining step, and then dissociated O moves to the surface of the Pt nanocrystals for oxidizing adsorbed CO. The results open a new pathway for tunable catalytic activity of CO oxidation.
Collapse
Affiliation(s)
- Zhaohui Ren
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Research Center for Intelligent Sensing, Zhejiang Lab, Hangzhou, 311100, China
| | - Luoyuan Ruan
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Research Center for Sensing Materials and Devices, Zhejiang Lab, Hangzhou, 311121, China
| | - Lichang Yin
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Karthik Akkiraju
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Livia Giordano
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Zhongran Liu
- Center of Electron Microscopy, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Shi Li
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zixing Ye
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Songda Li
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hangsheng Yang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yong Wang
- Center of Electron Microscopy, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - He Tian
- Center of Electron Microscopy, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Gang Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Yang Shao-Horn
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Gaorong Han
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
8
|
Liu Z, Yang J, Wen Y, Lan Y, Guo L, Chen X, Cao K, Chen R, Shan B. Promotional Effect of H 2 Pretreatment on the CO PROX Performance of Pt 1/Co 3O 4: A First-Principles-Based Microkinetic Analysis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27762-27774. [PMID: 35674013 DOI: 10.1021/acsami.2c00775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Atomic Pt studded on cobalt oxide is a promising catalyst for CO preferential oxidation (PROX) dependent on its surface treatment. In this work, the CO PROX reaction mechanism on Co3O4 supported single Pt atom is investigated by a comprehensive first-principles based microkinetic analysis. It is found that as synthesized Pt1/Co3O4 interface is poisoned by CO in a wide low temperature window, leading to its low reactivity. The CO poisoning effect can be effectively mitigated by a H2 prereduction treatment, that exposes Co ∼ Co dimer sites for a noncompetitive Langmuir-Hinshelhood mechanism. In addition, surface H atoms assist O2 dissociation via "twisting" mechanism, avoiding the high barriers associated with direct O2 dissociation path. Microkinetic analysis reveals that the promotion of H-assisted pathway on H2 treated sample helps improve the activity and selectivity at low temperatures.
Collapse
Affiliation(s)
- Zhang Liu
- State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
- School of Environmental Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Jiaqiang Yang
- State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Yanwei Wen
- State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Yuxiao Lan
- State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Limin Guo
- School of Environmental Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Xi Chen
- State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Kun Cao
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Rong Chen
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Bin Shan
- State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| |
Collapse
|
9
|
Abstract
Copper catalysts have been extensively studied for CO oxidation at low temperatures. Previous findings on the stability of such catalysts, on the other hand, revealed that they deactivated badly under extreme circumstances. Therefore, in this work, a series of KCC−1-supported copper oxide catalysts were successfully prepared by impregnation method, of which 5% CuO/KCC−1 exhibited the best activity: CO could be completely converted at 120 °C. The 5% CuO/KCC−1 catalyst exhibited better thermal stability, which is mainly attributed to the large specific surface area of KCC−1 that facilitates the high dispersion of CuO species, and because the dendritic layered walls can lengthen the movement distances from particle-to-particle, thus helping to slow down the tendency of active components to sinter. In addition, the 5% CuO/KCC−1 has abundant mesoporous and surface active oxygen species, which are beneficial to the mass transfer and promote the adsorption of CO and the decomposition of Cu+–CO species, thus improving the CO oxidation performance of the catalyst.
Collapse
|
10
|
Xie S, Tan W, Wang C, Arandiyan H, Garbrecht M, Ma L, Ehrlich SN, Xu P, Li Y, Zhang Y, Collier S, Deng J, Liu F. Structure-activity relationship of Pt catalyst on engineered ceria-alumina support for CO oxidation. J Catal 2022. [DOI: 10.1016/j.jcat.2021.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Abbas M, Sial MAZG. New Horizon in stabilization of single atoms on metal-oxide supports for CO2 reduction. NANO MATERIALS SCIENCE 2021. [DOI: 10.1016/j.nanoms.2021.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Lin L, Ge Y, Zhang H, Wang M, Xiao D, Ma D. Heterogeneous Catalysis in Water. JACS AU 2021; 1:1834-1848. [PMID: 34841403 PMCID: PMC8611672 DOI: 10.1021/jacsau.1c00319] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Heterogeneous catalytic processes produce the majority of the fuels and chemicals in the chemical industry and have kept improving the welfare of human beings for centuries. Although most of the heterogeneous catalytic reactions occur at the gas-solid interface, numerous cases have demonstrated that the condensed water near the active site and/or the aqueous phase merging the catalysts play positive roles in enhancing the performance of heterogeneous catalysts and creating novel catalytic conversion routes. We enumerate the traditional heterogeneous catalytic reactions that enable significant rate/selectivity promotion in the aqueous phase or adsorbed micro water environment and discuss the role of water in specific systems. Some of the novel heterogeneous reactions achieved with only the assistance of the aqueous phase have been summarized. The development of reactions with the participation of the aqueous phase/water and the investigation of the role of water in the heterogeneous catalytic reactions will open new horizons for catalysts with better activity, improved selectivity, and novel processes.
Collapse
Affiliation(s)
- Lili Lin
- Institute
of Industrial Catalysis, State Key Laboratory of Green Chemistry Synthesis
Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People’s
Republic of China
| | - Yuzhen Ge
- Beijing
National Laboratory for Molecular Sciences, College of Chemistry and
Molecular Engineering, and BIC-ESAT, Peking
University, Beijing 100871, People’s Republic
of China
| | - Hongbo Zhang
- School
of Materials Science and Engineering & National Institute for
Advanced Materials, Tianjin Key Laboratory for Rare Earth Materials
and Applications, Nankai University, Tianjin 300350, People’s Republic of China
| | - Meng Wang
- Beijing
National Laboratory for Molecular Sciences, College of Chemistry and
Molecular Engineering, and BIC-ESAT, Peking
University, Beijing 100871, People’s Republic
of China
| | - Dequan Xiao
- Center
for Integrative Materials Discovery, Department of Chemistry and Chemical
Engieering, University of New Haven, West Haven, Connecticut 06525, United States
| | - Ding Ma
- Beijing
National Laboratory for Molecular Sciences, College of Chemistry and
Molecular Engineering, and BIC-ESAT, Peking
University, Beijing 100871, People’s Republic
of China
| |
Collapse
|
13
|
Novel insights into diethylamine catalytic combustion over CuO catalysts supported by SSZ-13: Undesirable product NOx as a crucial intermediate for N2 generation. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Yuan E, Li Q, Ni P, Jian P, Deng Q. Microbehavior mechanism of water mediator on palladium in catalytic hydrogenation of aromatic carbonyl: Enhancement of hydrogen shuttling and modification of electronic structure. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Li J, He S, Wang T, Shen Z, Chen X, Zhou F. A catalyst powder-based spraying approach for rapid and efficient removal of fire-generated CO:From laboratory to pilot scale. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125607. [PMID: 33725549 DOI: 10.1016/j.jhazmat.2021.125607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/22/2021] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
In confined space fires, the large amount of CO generated by incomplete combustion of carbon-based materials poses a serious threat to the trapped people. However, the efficient method of removing CO in such disasters remains a great challenge. Herein, a spraying catalyst powder (SCP) approach is proposed for CO removal by oxidizing CO to harmless CO2. Cu/Mn catalyst, synthesized by using ethylene glycol as solvent, was employed in this study. The influence of catalyst concentration, temperature, CO2 concentration and initial CO concentration on CO removal performance of SCP approach was investigated. With 500 g/m3 catalyst, 25,000 ppm CO could be reduced to 2550 ppm within 1 min and completely removed in less than 2.83 min at 200 °C. The feasibility of SCP approach in practical application was validated by the remarkable CO removal performance for charcoal combustion in confined tunnel. SCP approach could effectively reduce the CO concentration, which would reach up to 12,659 ppm in the absence of SCP approach, to less than 1500 ppm within 30 min. The experiment results suggest that SCP technology can effectively remove the fire-generated CO and is promising for practical application in crowded occupancies, such as underground space and aircraft compartment.
Collapse
Affiliation(s)
- Jia Li
- Jiangsu Key Laboratory of Fire Safety in Urban Underground Space, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
| | - Sheng He
- Jiangsu Key Laboratory of Fire Safety in Urban Underground Space, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
| | - Tao Wang
- Jiangsu Key Laboratory of Fire Safety in Urban Underground Space, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
| | - Zhiyuan Shen
- Jiangsu Key Laboratory of Fire Safety in Urban Underground Space, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
| | - Xiaoyu Chen
- Jiangsu Key Laboratory of Fire Safety in Urban Underground Space, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China; State Key Laboratory of Coal Resources and Safe Mining China University of Mining and Technology, Jiangsu 221116, China; Key Laboratory of Gas and Fire Control for Coal Mines, China University of Mining and Technology, Ministry of Education, Xuzhou, Jiangsu 221116, China.
| | - Fubao Zhou
- Jiangsu Key Laboratory of Fire Safety in Urban Underground Space, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China; State Key Laboratory of Coal Resources and Safe Mining China University of Mining and Technology, Jiangsu 221116, China; Key Laboratory of Gas and Fire Control for Coal Mines, China University of Mining and Technology, Ministry of Education, Xuzhou, Jiangsu 221116, China.
| |
Collapse
|
16
|
Feng C, Liu X, Zhu T, Tian M. Catalytic oxidation of CO on noble metal-based catalysts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:24847-24871. [PMID: 33763831 DOI: 10.1007/s11356-021-13008-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
Carbon monoxide (CO) catalytic oxidation has gained increasing interest in recent years due to its application prospects. The noble metal catalysts commonly exhibit outstanding CO catalytic oxidation activity. Therefore, this article reviewed the recent research on the application of noble metal catalysts in the catalytic oxidation of CO. The effects of catalyst support, dopant, and physicochemical properties on the catalytic activity for CO oxidation are summarized. The influence of the presence of water vapor and sulfur dioxide in the reaction atmosphere on the catalytic activity in CO oxidation is emphatically discussed. Moreover, this paper discussed several reaction mechanisms of CO catalytic oxidation on noble metal catalysts. Finally, the challenges of removing CO by catalytic oxidation in practical industrial flue gas are proposed.
Collapse
Affiliation(s)
- Chenglin Feng
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, Guizhou, China
- Beijing Engineering Research Center of Process Pollution Control, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaolong Liu
- Beijing Engineering Research Center of Process Pollution Control, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Tingyu Zhu
- Beijing Engineering Research Center of Process Pollution Control, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing, 100190, China.
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| | - Mengkui Tian
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, Guizhou, China
| |
Collapse
|
17
|
Yan X, Gan T, Shi S, Du J, Xu G, Zhang W, Yan W, Zou Y, Liu G. Potassium-incorporated manganese oxide enhances the activity and durability of platinum catalysts for low-temperature CO oxidation. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01409a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Potassium-incorporated manganese oxide is demonstrated as an efficient support for fabricating highly active and stable Pt catalysts for low-temperature CO oxidation.
Collapse
Affiliation(s)
- Xuelan Yan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Tao Gan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Shaozhen Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Juan Du
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China
| | - Guohao Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Wenxiang Zhang
- Institute of Physical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Wenfu Yan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yongcun Zou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Gang Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
18
|
Cao L, Lu J. Atomic-scale engineering of metal–oxide interfaces for advanced catalysis using atomic layer deposition. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00304b] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Two main routes to optimization of metal–oxide interfaces: reducing metal particle size and oxide overcoating.
Collapse
Affiliation(s)
- Lina Cao
- Hefei National Laboratory for Physical Sciences at the Microscale
- University of Science and Technology of China
- Hefei 230026
- P. R. China
| | - Junling Lu
- Hefei National Laboratory for Physical Sciences at the Microscale
- University of Science and Technology of China
- Hefei 230026
- P. R. China
- Department of Chemical Physics
| |
Collapse
|