1
|
Kuang Y, Li M, Fu L, Feng L. Deciphering promotion of MoP over MoC in Pt catalysts for methanol-assisted water splitting reaction. J Colloid Interface Sci 2025; 679:921-929. [PMID: 39406036 DOI: 10.1016/j.jcis.2024.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/01/2024] [Accepted: 10/06/2024] [Indexed: 11/20/2024]
Abstract
Molybdenum-based compounds show promising promotion effects on Pt catalysts for energy-relevant catalysis reactions. Herein, a more effective promotion effect of MoP than MoC was found in assisting Pt nanoparticles for methanol-assisted hydrogen generation in light of the strong metal-support interaction and synergistic effect between Pt and MoP/C nanospheres. Electrochemical analyses and theoretical calculations demonstrated that Pt-MoP/C facilitated the oxidation and removal of CO intermediates more effectively than Pt-MoC/C. This enhanced performance was attributed to the distinct 6-coordination environment of hexagonal MoP and the elevated electron density of Mo induced by phosphorus. These structural and electronic features significantly enhanced electron transfer to Pt, thereby creating strong metal-support interaction and synergistic effect to improve the overall catalytic efficiency. Especially, the unique activities of Moδ+ and Moδ- in the MoP modified the surface structure of Pt, lowered the Pt d-band center, and optimized the local chemical state of Pt atoms, which resulted in more optimized adsorption energy and charge transfer capabilities of intermediates. The Pt-MoP/C electrolyzer thus showed both lower cell voltage than that of Pt-MoC/C and Pt/C electrolyzers in water splitting and methanol-assisted water splitting for hydrogen generation. This study offers insightful information about the promotion effect of molybdenum-based compounds in Pt catalyst systems in energy-relevant catalysis reactions.
Collapse
Affiliation(s)
- Yubin Kuang
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Siwangting Road, Yangzhou 225002, China
| | - Meng Li
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Siwangting Road, Yangzhou 225002, China
| | - Luhong Fu
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China.
| | - Ligang Feng
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Siwangting Road, Yangzhou 225002, China.
| |
Collapse
|
2
|
Tsuda T, Sheng M, Ishikawa H, Yamazoe S, Yamasaki J, Hirayama M, Yamaguchi S, Mizugaki T, Mitsudome T. Iron phosphide nanocrystals as an air-stable heterogeneous catalyst for liquid-phase nitrile hydrogenation. Nat Commun 2023; 14:5959. [PMID: 37770434 PMCID: PMC10539298 DOI: 10.1038/s41467-023-41627-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/12/2023] [Indexed: 09/30/2023] Open
Abstract
Iron-based heterogeneous catalysts are ideal metal catalysts owing to their abundance and low-toxicity. However, conventional iron nanoparticle catalysts exhibit extremely low activity in liquid-phase reactions and lack air stability. Previous attempts to encapsulate iron nanoparticles in shell materials toward air stability improvement were offset by the low activity of the iron nanoparticles. To overcome the trade-off between activity and stability in conventional iron nanoparticle catalysts, we developed air-stable iron phosphide nanocrystal catalysts. The iron phosphide nanocrystal exhibits high activity for liquid-phase nitrile hydrogenation, whereas the conventional iron nanoparticles demonstrate no activity. Furthermore, the air stability of the iron phosphide nanocrystal allows facile immobilization on appropriate supports, wherein TiO2 enhances the activity. The resulting TiO2-supported iron phosphide nanocrystal successfully converts various nitriles to primary amines and demonstrates high reusability. The development of air-stable and active iron phosphide nanocrystal catalysts significantly expands the application scope of iron catalysts.
Collapse
Affiliation(s)
- Tomohiro Tsuda
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Min Sheng
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Hiroya Ishikawa
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Seiji Yamazoe
- Department of Chemistry, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Jun Yamasaki
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, 7-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Motoaki Hirayama
- Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama, 333-0012, Japan
| | - Sho Yamaguchi
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Tomoo Mizugaki
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka, 565-0871, Japan
| | - Takato Mitsudome
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan.
- PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama, 333-0012, Japan.
| |
Collapse
|
3
|
Chu S, Li X, Prins R, Wang C, Liu Y, Wang A, Sheng Q. Preparation of ultrasmall Ni2P nanoparticles with low P/Ni ratios supported on SiO2 and an Al2O3-B2O3 mixed oxide for dibenzothiophene hydrodesulfurization. J Catal 2023. [DOI: 10.1016/j.jcat.2023.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
4
|
Flower-like nickel phosphide catalyst for petroleum resin hydrogenation with enhanced catalytic activity, hydrodesulfurization ability and stability. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Li X, Zhou X, Wang L, Lv J, Liu S, Prins R, Wang A, Sheng Q. Mechanistic studies and kinetics of the desulfurization of 2-phenylcyclohexanethiol over sulfided Mo, Ni-Mo, and Co-Mo on γ-Al2O3. J Catal 2021. [DOI: 10.1016/j.jcat.2021.01.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
7
|
Zhou X, Li X, Prins R, Lv J, Wang A, Sheng Q. Hydrodesulfurization of dibenzothiophene and its hydrogenated intermediates over bulk CoP and Co2P catalysts with stoichiometric P/Co ratios. J Catal 2021. [DOI: 10.1016/j.jcat.2020.08.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
8
|
Li SH, Qi MY, Tang ZR, Xu YJ. Nanostructured metal phosphides: from controllable synthesis to sustainable catalysis. Chem Soc Rev 2021; 50:7539-7586. [PMID: 34002737 DOI: 10.1039/d1cs00323b] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Metal phosphides (MPs) with unique and desirable physicochemical properties provide promising potential in practical applications, such as the catalysis, gas/humidity sensor, environmental remediation, and energy storage fields, especially for transition metal phosphides (TMPs) and MPs consisting of group IIIA and IVA metal elements. Most studies, however, on the synthesis of MP nanomaterials still face intractable challenges, encompassing the need for a more thorough understanding of the growth mechanism, strategies for large-scale synthesis of targeted high-quality MPs, and practical achievement of functional applications. This review aims at providing a comprehensive update on the controllable synthetic strategies for MPs from various metal sources. Additionally, different passivation strategies for engineering the structural and electronic properties of MP nanostructures are scrutinized. Then, we showcase the implementable applications of MP-based materials in emerging sustainable catalytic fields including electrocatalysis, photocatalysis, mild thermocatalysis, and related hybrid systems. Finally, we offer a rational perspective on future opportunities and remaining challenges for the development of MPs in the materials science and sustainable catalysis fields.
Collapse
Affiliation(s)
- Shao-Hai Li
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, New Campus, Fuzhou University, Fuzhou, 350116, P. R. China.
| | - Ming-Yu Qi
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, New Campus, Fuzhou University, Fuzhou, 350116, P. R. China.
| | - Zi-Rong Tang
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, New Campus, Fuzhou University, Fuzhou, 350116, P. R. China.
| | - Yi-Jun Xu
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, New Campus, Fuzhou University, Fuzhou, 350116, P. R. China.
| |
Collapse
|
9
|
Tian S, Mao W, Sun P, Dang J, Zhou L, Lu J, Kemnitz E. Breakthrough synthesis of 2,3,3,3-tetrafluoropropene via hydrogen-assisted selective dehydrochlorination of 1,1,1,2-tetrafluoro-2-chloropropane over nickel phosphides. J Catal 2020. [DOI: 10.1016/j.jcat.2020.08.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|