1
|
Wang HY, Yuan ZY. Hydrazine-assisted water electrolysis system: performance enhancement and application expansion. MATERIALS HORIZONS 2025. [PMID: 40289549 DOI: 10.1039/d5mh00118h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Powered by renewable energy sources, water electrolysis has emerged as a highly promising technology for energy conversion, attracting significant attention in recent years, but it faces severe challenges, especially at the anode. Accordingly, hydrazine-assisted water electrolysis, incorporating the electro-oxidation of hydrazine at the anode, holds great promise for greatly reducing the input voltage and optimizing the system by application expansion. In this review, we present an in-depth overview of hydrazine-assisted water electrolysis, introducing its reaction mechanisms, basic parameters, specific advantages compared with conventional water electrolysis and other hybrid water electrolysis systems, strategies for developing efficient electrocatalysts with enhanced electrocatalytic performances, and especially its potential application expansion. An analysis of its technical and economic aspects, feasibility studies, mechanistic investigations, and relevant comparisons are also presented for providing a deeper insight into hydrazine-assisted water electrolysis. Finally, the potential avenues and opportunities for future research on hydrazine-assisted water electrolysis are discussed.
Collapse
Affiliation(s)
- Hao-Yu Wang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300050, China.
| | - Zhong-Yong Yuan
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300050, China.
| |
Collapse
|
2
|
Ramos NC, Manyé Ibáñez M, Mittal R, Janik MJ, Holewinski A. Combining Renewable Electricity and Renewable Carbon: Understanding Reaction Mechanisms of Biomass-Derived Furanic Compounds for Design of Catalytic Nanomaterials. Acc Chem Res 2023; 56:2631-2641. [PMID: 37718487 DOI: 10.1021/acs.accounts.3c00368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
ConspectusDespite the growing deployment of renewable energy conversion technologies, a number of large industrial sectors remain challenging to decarbonize. Aviation, heavy transport, and the production of steel, cement, and chemicals are heavily dependent on carbon-containing fuels and feedstocks. A hopeful avenue toward carbon neutrality is the implementation of renewable carbon for the synthesis of critical fuels, chemicals, and materials. Biomass provides an opportune source of renewable carbon, naturally capturing atmospheric CO2 and forming multicarbon linkages and useful chemical functional groups. The constituent molecules nonetheless require various chemical transformations, often best facilitated by catalytic nanomaterials, in order to access usable final products.Catalyzed transformations of renewable biomass compounds may intersect with renewable energy production by offering a means to utilize excess intermittent electricity and store it within chemical bonds. Electrochemical catalytic processes can often offer advantages in energy efficiency, product selectivity, and modular scalability compared to thermal-driven reactions. Electrocatalytic reactions with renewable carbon feedstocks can further enable related processes such as water splitting, where value-adding organic oxidation reactions may replace the evolution of oxygen. Organic electroreduction reactions may also allow desirable hydrogenations of bonds without intermediate formation of H2 and need for additional reactors.This Account highlights recent work aimed at gaining a fundamental understanding of transformations involving biomass-derived molecules in electrocatalytic nanomaterials. Particular emphasis is placed on the oxidation of biomass derived furanic compounds such as furfural and 5-hydroxymethylfurfural (HMF), which can yield value-added chemicals, including furoic acid (FA), maleic acid (MA), and 2,5-furandicarboxylic acid (FDCA) for renewable materials and other commodities. We highlight advanced implementations of online electrochemical mass spectrometry (OLEMS) and vibrational spectroscopies such as attenuated total reflectance surface enhanced infrared reflection absorption spectroscopy (ATR-SEIRAS), combined with microkinetic models (MKMs) and quantum chemical calculations, to shed light on the elementary mechanistic pathways involved in electrochemical biomass conversion and how these paths are influenced by catalytic nanomaterials. Perspectives are given on the potential opportunities for materials development toward more efficient and selective carbon-mitigating reaction pathways.
Collapse
Affiliation(s)
- Nathanael C Ramos
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, Colorado 80309, United States
| | - Marc Manyé Ibáñez
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, Colorado 80309, United States
| | - Rupali Mittal
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, Colorado 80309, United States
| | - Michael J Janik
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Adam Holewinski
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
3
|
Xu G, Cai C, Zhao W, Liu Y, Wang T. Rational design of catalysts with earth‐abundant elements. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Gaomou Xu
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science Westlake University Hangzhou Zhejiang Province China
- Institute of Natural Sciences, Westlake Institute for Advanced Study Hangzhou Zhejiang Province China
| | - Cheng Cai
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science Westlake University Hangzhou Zhejiang Province China
- Institute of Natural Sciences, Westlake Institute for Advanced Study Hangzhou Zhejiang Province China
| | - Wanghui Zhao
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science Westlake University Hangzhou Zhejiang Province China
- Institute of Natural Sciences, Westlake Institute for Advanced Study Hangzhou Zhejiang Province China
| | - Yonghua Liu
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science Westlake University Hangzhou Zhejiang Province China
- Institute of Natural Sciences, Westlake Institute for Advanced Study Hangzhou Zhejiang Province China
| | - Tao Wang
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science Westlake University Hangzhou Zhejiang Province China
- Institute of Natural Sciences, Westlake Institute for Advanced Study Hangzhou Zhejiang Province China
| |
Collapse
|
4
|
Pt-O-Cu Anchored on Fe2O3 Boosting Electrochemical Water-gas Shift Reaction for Highly Efficient H2 Generation. J Catal 2022. [DOI: 10.1016/j.jcat.2022.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Ro I, Qi J, Lee S, Xu M, Yan X, Xie Z, Zakem G, Morales A, Chen JG, Pan X, Vlachos DG, Caratzoulas S, Christopher P. Bifunctional hydroformylation on heterogeneous Rh-WO x pair site catalysts. Nature 2022; 609:287-292. [PMID: 36071187 DOI: 10.1038/s41586-022-05075-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 07/05/2022] [Indexed: 11/09/2022]
Abstract
Metal-catalysed reactions are often hypothesized to proceed on bifunctional active sites, whereby colocalized reactive species facilitate distinct elementary steps in a catalytic cycle1-8. Bifunctional active sites have been established on homogeneous binuclear organometallic catalysts9-11. Empirical evidence exists for bifunctional active sites on supported metal catalysts, for example, at metal-oxide support interfaces2,6,7,12. However, elucidating bifunctional reaction mechanisms on supported metal catalysts is challenging due to the distribution of potential active-site structures, their dynamic reconstruction and required non-mean-field kinetic descriptions7,12,13. We overcome these limitations by synthesizing supported, atomically dispersed rhodium-tungsten oxide (Rh-WOx) pair site catalysts. The relative simplicity of the pair site structure and sufficient description by mean-field modelling enable correlation of the experimental kinetics with first principles-based microkinetic simulations. The Rh-WOx pair sites catalyse ethylene hydroformylation through a bifunctional mechanism involving Rh-assisted WOx reduction, transfer of ethylene from WOx to Rh and H2 dissociation at the Rh-WOx interface. The pair sites exhibited >95% selectivity at a product formation rate of 0.1 gpropanal cm-3 h-1 in gas-phase ethylene hydroformylation. Our results demonstrate that oxide-supported pair sites can enable bifunctional reaction mechanisms with high activity and selectivity for reactions that are performed in industry using homogeneous catalysts.
Collapse
Affiliation(s)
- Insoo Ro
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA.,Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul, Republic of Korea.,Catalysis Center for Energy Innovation, Newark, DE, USA
| | - Ji Qi
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA.,Catalysis Center for Energy Innovation, Newark, DE, USA
| | - Seungyeon Lee
- Catalysis Center for Energy Innovation, Newark, DE, USA.,Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA
| | - Mingjie Xu
- Department of Materials Science and Engineering, University of California Irvine, Irvine, CA, USA
| | - Xingxu Yan
- Department of Materials Science and Engineering, University of California Irvine, Irvine, CA, USA
| | - Zhenhua Xie
- Chemistry Division, Brookhaven National Laboratory, Upton, NY, USA.,Department of Chemical Engineering, Columbia University, New York, NY, USA
| | - Gregory Zakem
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Austin Morales
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Jingguang G Chen
- Chemistry Division, Brookhaven National Laboratory, Upton, NY, USA.,Department of Chemical Engineering, Columbia University, New York, NY, USA
| | - Xiaoqing Pan
- Department of Materials Science and Engineering, University of California Irvine, Irvine, CA, USA.,Department of Physics and Astronomy, University of California, Irvine, Irvine, CA, USA.,Irvine Materials Research Institute (IMRI), University of California Irvine, Irvine, Irvine, CA, USA
| | - Dionisios G Vlachos
- Catalysis Center for Energy Innovation, Newark, DE, USA.,Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA
| | - Stavros Caratzoulas
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA
| | - Phillip Christopher
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA. .,Catalysis Center for Energy Innovation, Newark, DE, USA.
| |
Collapse
|
6
|
Dynamic Pt Coordination in Dilute AgPt Alloy Nanoparticle Catalysts Under Reactive Environments. Top Catal 2022. [DOI: 10.1007/s11244-021-01545-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
Calderón-Cárdenas A, Paredes-Salazar EA, Varela H. Micro-kinetic Description of Electrocatalytic Reactions: The Role of Self-organized Phenomena. NEW J CHEM 2022. [DOI: 10.1039/d2nj00758d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this perspective we proposed a workflow for the construction of micro-kinetic models that consists of at least four stages, starting with information gathering that allows proposing possible reaction mechanisms....
Collapse
|
8
|
Yan D, Kristoffersen HH, Pedersen JK, Rossmeisl J. Rationally Tailoring Catalysts for the CO Oxidation Reaction by Using DFT Calculations. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dengxin Yan
- Department of Chemistry, University of Copenhagen, Copenhagen 2100, Denmark
| | | | - Jack K. Pedersen
- Department of Chemistry, University of Copenhagen, Copenhagen 2100, Denmark
| | - Jan Rossmeisl
- Department of Chemistry, University of Copenhagen, Copenhagen 2100, Denmark
| |
Collapse
|
9
|
Baz A, Dix ST, Holewinski A, Linic S. Microkinetic modeling in electrocatalysis: Applications, limitations, and recommendations for reliable mechanistic insights. J Catal 2021. [DOI: 10.1016/j.jcat.2021.08.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
10
|
Engstfeld AK, Klein J, Brimaud S. Bifunctional versus Defect-Mediated Effects in Electrocatalytic Methanol Oxidation. Chemphyschem 2021; 22:828-832. [PMID: 33635558 PMCID: PMC8251818 DOI: 10.1002/cphc.202000979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/16/2021] [Indexed: 11/09/2022]
Abstract
The most prominent and intensively studied anode catalyst material for direct methanol oxidation fuel cells consists of a combination of platinum (Pt) and ruthenium (Ru). Classically, their high performance is attributed to a bifunctional reaction mechanism where Ru sites provide oxygen species at lower overpotential than Pt. In turn, they oxidize the adsorbed carbonaceous reaction intermediates at lower overpotential; among these, the Pt site-blocking carbon monoxide. We demonstrate that well-defined Pt modified Ru(0001) single crystal electrodes, with varying Pt contents and different local PtRu configurations at the surface, are unexpectedly inactive for the methanol oxidation reaction. This observation stands in contradiction with theoretical predictions and the concept of bifunctional catalysis for this reaction. Instead, we suggest that pure Pt defect sites play a more critical role than bifunctional defect sites on the electrodes investigated in this work.
Collapse
Affiliation(s)
- Albert K. Engstfeld
- Institute of Surface Chemistry and CatalysisUlm UniversityAlbert-Einstein-Allee 4789081UlmGermany
- Present Address: Institute of ElectrochemistryUlm UniversityAlbert-Einstein-Allee 4789081UlmGermany
| | - Jens Klein
- Institute of Surface Chemistry and CatalysisUlm UniversityAlbert-Einstein-Allee 4789081UlmGermany
| | - Sylvain Brimaud
- Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg (ZSW)Helmholtzstrasse 889081UlmGermany
| |
Collapse
|
11
|
Coverage-dependent formic acid oxidation reaction kinetics determined by oscillating potentials. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
12
|
Su B, Wang K, Tseng C, Lu K, Pao C, Lee J, Sheu H, Wu K, Juang J, Chen J. An In Situ Quick X‐ray Absorption Spectroscopy Study on Pt
3
Sn/Graphene Catalyst for Ethanol Oxidation Reaction. ChemCatChem 2020. [DOI: 10.1002/cctc.202001400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Bing‐Jian Su
- National Synchrotron Radiation Research Center Hsinchu 30076 Taiwan
| | - Kuan‐Wen Wang
- Institute of Materials Science and Engineering National Central University Chungli 32001 Taiwan
| | - Chung‐Jen Tseng
- Department of Mechanical Engineering National Central University Chungli 32001 Taiwan
| | - Kueih‐Tzu Lu
- National Synchrotron Radiation Research Center Hsinchu 30076 Taiwan
| | - Chih‐Wen Pao
- National Synchrotron Radiation Research Center Hsinchu 30076 Taiwan
| | - Jyh‐Fu Lee
- National Synchrotron Radiation Research Center Hsinchu 30076 Taiwan
| | - Hwo‐Shuenn Sheu
- National Synchrotron Radiation Research Center Hsinchu 30076 Taiwan
| | - Kuang‐Hsu Wu
- School of Chemical Engineering The University of New South Wales Sydney Kensington NSW 2052 Australia
| | - Jenh‐Yih Juang
- Department of Electrophysics National Chiao Tung University Hsinchu 30076 Taiwan
| | - Jin‐Ming Chen
- National Synchrotron Radiation Research Center Hsinchu 30076 Taiwan
| |
Collapse
|
13
|
Román AM, Spivey TD, Medlin JW, Holewinski A. Accelerating Electro-oxidation Turnover Rates via Potential-Modulated Stimulation of Electrocatalytic Activity. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04414] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alex M. Román
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Taylor D. Spivey
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - J. Will Medlin
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Adam Holewinski
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, Colorado 80303, United States
| |
Collapse
|
14
|
Auer A, Andersen M, Wernig EM, Hörmann NG, Buller N, Reuter K, Kunze-Liebhäuser J. Self-activation of copper electrodes during CO electro-oxidation in alkaline electrolyte. Nat Catal 2020. [DOI: 10.1038/s41929-020-00505-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|