1
|
Zheng M, Zhou F, Ma H, Song X, Wu G. Hydroxyapatite supported molybdenum oxide catalyst for selective dehydrogenation of cyclohexane to cyclohexene: studies of dispersibility and chemical environment. RSC Adv 2024; 14:36461-36470. [PMID: 39553280 PMCID: PMC11565164 DOI: 10.1039/d4ra06259k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/25/2024] [Indexed: 11/19/2024] Open
Abstract
The selective oxidative dehydrogenation of cyclohexane to cyclohexene was conducted using molybdenum oxide (MoO x ) as a catalyst and hydroxyapatite (HAP) and Ca5(OH)(PO4)3 as carriers. Two series of MO x /HAP catalysts with varying MoO x loading capacity and calcination temperature were prepared via the co-impregnation method. The impact of dispersibility and chemical environment on the catalytic performance of MoO x was investigated. The catalysts were characterized using XRD, XPS, H2-TPR, and UV-Vis spectra. These MoO x /HAP catalysts were employed for the oxidative dehydrogenation (ODH) of cyclohexane to cyclohexene. MoO x /HAP catalysts with lower loading capacity exhibited higher dispersion of MoO x and selectivity towards cyclohexane. The calcination temperature directly influenced the chemical environment of MoO x , thereby affecting its catalytic performance. Samples calcinated at lower temperatures (500 °C and 600 °C) demonstrated higher conversion rates for cyclohexane, while samples calcinated at higher temperatures (above 700 °C) displayed greater selectivity towards cyclohexane. At 430 °C, when the conversion rate of cyclohexane reached 13.1%, the selectivity of cyclohexene over MHAP-0.05-800 catalyst reached 58.2%.
Collapse
Affiliation(s)
- Mingxiao Zheng
- School of Chemistry and Materials Sciences, Research Institute of Crop Science, Heilongjiang University Harbin 150080 China
| | - Feng Zhou
- Dalian Reserch Institute of Petroleum and Petrochemicals, SINOPEC Dalian 116045 China
| | - Huixia Ma
- Dalian Reserch Institute of Petroleum and Petrochemicals, SINOPEC Dalian 116045 China
| | - Xuefeng Song
- School of Chemistry and Materials Sciences, Research Institute of Crop Science, Heilongjiang University Harbin 150080 China
| | - Guang Wu
- School of Chemistry and Materials Sciences, Research Institute of Crop Science, Heilongjiang University Harbin 150080 China
| |
Collapse
|
2
|
Chen S, Luo R, Zhao ZJ, Pei C, Xu Y, Lu Z, Zhao C, Song H, Gong J. Concerted oxygen diffusion across heterogeneous oxide interfaces for intensified propane dehydrogenation. Nat Commun 2023; 14:2620. [PMID: 37147344 PMCID: PMC10163216 DOI: 10.1038/s41467-023-38284-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/24/2023] [Indexed: 05/07/2023] Open
Abstract
Propane dehydrogenation (PDH) is an industrial technology for direct propylene production which has received extensive attention in recent years. Nevertheless, existing non-oxidative dehydrogenation technologies still suffer from the thermodynamic equilibrium limitations and severe coking. Here, we develop the intensified propane dehydrogenation to propylene by the chemical looping engineering on nanoscale core-shell redox catalysts. The core-shell redox catalyst combines dehydrogenation catalyst and solid oxygen carrier at one particle, preferably compose of two to three atomic layer-type vanadia coating ceria nanodomains. The highest 93.5% propylene selectivity is obtained, sustaining 43.6% propylene yield under 300 long-term dehydrogenation-oxidation cycles, which outperforms an analog of industrially relevant K-CrOx/Al2O3 catalysts and exhibits 45% energy savings in the scale-up of chemical looping scheme. Combining in situ spectroscopies, kinetics, and theoretical calculation, an intrinsically dynamic lattice oxygen "donator-acceptor" process is proposed that O2- generated from the ceria oxygen carrier is boosted to diffuse and transfer to vanadia dehydrogenation sites via a concerted hopping pathway at the interface, stabilizing surface vanadia with moderate oxygen coverage at pseudo steady state for selective dehydrogenation without significant overoxidation or cracking.
Collapse
Affiliation(s)
- Sai Chen
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), Tianjin, 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Ran Luo
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), Tianjin, 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Zhi-Jian Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), Tianjin, 300072, China
| | - Chunlei Pei
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), Tianjin, 300072, China
| | - Yiyi Xu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), Tianjin, 300072, China
| | - Zhenpu Lu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), Tianjin, 300072, China
| | - Chengjie Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), Tianjin, 300072, China
| | - Hongbo Song
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), Tianjin, 300072, China
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, China.
- Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), Tianjin, 300072, China.
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China.
- National Industry-Education Platform of Energy Storage, Tianjin, 300350, China.
| |
Collapse
|
3
|
Wang X, Syed ZH, Chen Z, Bazak JD, Gong X, Wasson MC, Washton NM, Chapman KW, Notestein JM, Farha OK. Enhanced Catalytic Performance of a Ce/V Oxo Cluster through Confinement in Mesoporous SBA-15. ACS APPLIED MATERIALS & INTERFACES 2022; 14:52886-52893. [PMID: 36395424 DOI: 10.1021/acsami.2c15046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
To increase catalytic efficiency, mesoporous supports have been widely applied to immobilize well-defined metal oxide clusters due to their ability to stabilize highly dispersed clusters. Herein, a redox-active heterometallic Ce12V6-oxo cluster (CeV) was first presynthesized and then incorporated into mesoporous silica, SBA-15, via a straightforward impregnation method. Scanning transmission electron microscopy (STEM) and Fourier transform infrared spectroscopy (FTIR), in concert with scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM-EDS), verified the successful introduction of the CeV cluster inside the pore of SBA-15. The 51V magic angle spinning solid-state nuclear magnetic resonance (51V MAS NMR) spectroscopy and differential pair distribution function (dPDF) analysis confirmed the structural integrity of the CeV cluster inside the SBA-15. The composite was then benchmarked for liquid-phase oxidation of 2-chloroethyl ethyl sulfide (CEES) under mild conditions and gas-phase oxidative dehydrogenation (ODH) of propane under high temperatures (up to 550 °C). The catalytic reactivity results demonstrated 8- and 14-fold increase in turnover frequency (TOF) values of the composite (CeV@10SBA-2) than the bulk CeV cluster under the same conditions for CEES oxidation and ODH, respectively. These results highlight the improved reactivity of the catalytically active CeV cluster as attributed to the higher dispersion of the discrete cluster upon immobilization within the SBA-15 support.
Collapse
Affiliation(s)
- Xingjie Wang
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Zoha H Syed
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Zhihengyu Chen
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - J David Bazak
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Xinyi Gong
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Megan C Wasson
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Nancy M Washton
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Karena W Chapman
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Justin M Notestein
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Omar K Farha
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
4
|
Zaera F. Designing Sites in Heterogeneous Catalysis: Are We Reaching Selectivities Competitive With Those of Homogeneous Catalysts? Chem Rev 2022; 122:8594-8757. [PMID: 35240777 DOI: 10.1021/acs.chemrev.1c00905] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A critical review of different prominent nanotechnologies adapted to catalysis is provided, with focus on how they contribute to the improvement of selectivity in heterogeneous catalysis. Ways to modify catalytic sites range from the use of the reversible or irreversible adsorption of molecular modifiers to the immobilization or tethering of homogeneous catalysts and the development of well-defined catalytic sites on solid surfaces. The latter covers methods for the dispersion of single-atom sites within solid supports as well as the use of complex nanostructures, and it includes the post-modification of materials via processes such as silylation and atomic layer deposition. All these methodologies exhibit both advantages and limitations, but all offer new avenues for the design of catalysts for specific applications. Because of the high cost of most nanotechnologies and the fact that the resulting materials may exhibit limited thermal or chemical stability, they may be best aimed at improving the selective synthesis of high value-added chemicals, to be incorporated in organic synthesis schemes, but other applications are being explored as well to address problems in energy production, for instance, and to design greener chemical processes. The details of each of these approaches are discussed, and representative examples are provided. We conclude with some general remarks on the future of this field.
Collapse
Affiliation(s)
- Francisco Zaera
- Department of Chemistry and UCR Center for Catalysis, University of California, Riverside, California 92521, United States
| |
Collapse
|
5
|
Polymer-supported first-row transition metal schiff base complexes: Efficient catalysts for epoxidation of alkenes. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2021.105142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
6
|
Wang X, Brunson K, Xie H, Colliard I, Wasson MC, Gong X, Ma K, Wu Y, Son FA, Idrees KB, Zhang X, Notestein JM, Nyman M, Farha OK. Heterometallic Ce IV/ V V Oxo Clusters with Adjustable Catalytic Reactivities. J Am Chem Soc 2021; 143:21056-21065. [PMID: 34873904 DOI: 10.1021/jacs.1c11208] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Heterometallic CeIV/M oxo clusters are underexplored yet and can benefit from synergistic properties from combining cerium and other metal cations to produce efficient redox catalysts. Herein, we designed and synthesized a series of new Ce12V6 oxo clusters with different capping ligands: Ce12V6-SO4, Ce12V6-OTs (OTs: toluenesulfonic acid), and Ce12V6-NBSA (NBSA: nitrobenzenesulfonic acid). Single crystal X-ray diffraction (SCXRD) for all three structures reveals a Ce12V6 cubane core formulated [Ce12(VO)6O24]18+ with cerium on the edges of the cube, vanadyl capping the faces, and sulfate on the corners. While infrared spectroscopy (IR), ultraviolet-visible spectroscopy (UV-vis), electrospray ionization mass spectrometry (ESI-MS), and proton nuclear magnetic resonance (1H NMR) proved the successful coordination of the organic ligands to the Ce12V6 core, liquid phase 51V NMR and small-angle X-ray scattering (SAXS) confirmed the integrity of the clusters in the organic solutions. Furthermore, functionalization of the Ce12V6 core with organic ligands both provides increased solubility in term of homogeneous application and introduces porosity to the assemblies of Ce12V6-OTs and Ce12V6-NBSA in term of heterogeneous application, thus allowing more catalytic sites to be accessible and improving reactivity as compared to the nonporous and less soluble Ce12V6-SO4. Meanwhile, the coordinated ligands also influenced the electronic environment of the catalytic sites, in turn affecting the reactivity of the cluster, which we probed by the selective oxidation of 2-chloroethyl ethyl sulfide (CEES). This work provides a strategy to make full use of the catalytic sites within a class of inorganic sulfate capped clusters via organic ligand introduction.
Collapse
Affiliation(s)
- Xingjie Wang
- International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Kieran Brunson
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Haomiao Xie
- International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Ian Colliard
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Megan C Wasson
- International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xinyi Gong
- International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Kaikai Ma
- International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yufang Wu
- International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Florencia A Son
- International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Karam B Idrees
- International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xuan Zhang
- International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Justin M Notestein
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - May Nyman
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Omar K Farha
- International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
7
|
|
8
|
Arinaga AM, Alayoglu S, Zheng D, Marks TJ. Supported Vanadium Catalysts for Selective Sulfur‐Oxidative Dehydrogenation of Propane. ChemCatChem 2021. [DOI: 10.1002/cctc.202100922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Allison M. Arinaga
- Department of Chemistry and Center for Catalysis and Surface Science Northwestern University 2145 Sheridan Road Evanston IL 60208-3113 USA
| | - Selim Alayoglu
- Institute for Sustainability and Energy at Northwestern Northwestern University 2145 Sheridan Road Evanston IL 60208-3113 USA
| | - Ding Zheng
- Department of Chemistry and Center for Catalysis and Surface Science Northwestern University 2145 Sheridan Road Evanston IL 60208-3113 USA
| | - Tobin J. Marks
- Department of Chemistry and Center for Catalysis and Surface Science Northwestern University 2145 Sheridan Road Evanston IL 60208-3113 USA
| |
Collapse
|
9
|
Huang X, Zhang K, Peng B, Wang G, Muhler M, Wang F. Ceria-Based Materials for Thermocatalytic and Photocatalytic Organic Synthesis. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02443] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xiubing Huang
- Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Beijing 10083, PR China
| | - Kaiyue Zhang
- Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Beijing 10083, PR China
| | - Baoxiang Peng
- Laboratory of Industrial Chemistry, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Nordrhein-Westfalen, Germany
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34−36, 45470 Mülheim an der Ruhr, Nordrhein-Westfalen, Germany
| | - Ge Wang
- Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Beijing 10083, PR China
| | - Martin Muhler
- Laboratory of Industrial Chemistry, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Nordrhein-Westfalen, Germany
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34−36, 45470 Mülheim an der Ruhr, Nordrhein-Westfalen, Germany
| | - Feng Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, PR China
| |
Collapse
|
10
|
Najari S, Saeidi S, Concepcion P, Dionysiou DD, Bhargava SK, Lee AF, Wilson K. Oxidative dehydrogenation of ethane: catalytic and mechanistic aspects and future trends. Chem Soc Rev 2021; 50:4564-4605. [DOI: 10.1039/d0cs01518k] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ethane oxidative dehydrogenation (ODH) is an attractive, low energy, alternative route to reduce the carbon footprint for ethene production, however, the commercial implementation of ODH processes requires catalysts with improved selectivity.
Collapse
Affiliation(s)
- Sara Najari
- Department of Energy Engineering
- Budapest University of Technology and Economics
- Budapest
- Hungary
| | - Samrand Saeidi
- Institute of Energy and Process Systems Engineering
- Technische Universität Braunschweig
- 38106 Braunschweig
- Germany
| | - Patricia Concepcion
- Instituto de Tecnología Química
- Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC)
- Valencia
- Spain
| | - Dionysios D. Dionysiou
- Environmental Engineering and Science Program
- Department of Chemical and Environmental Engineering
- University of Cincinnati
- Cincinnati
- USA
| | - Suresh K. Bhargava
- Centre for Applied Materials and Industrial Chemistry (CAMIC)
- School of Science
- RMIT University
- Melbourne
- Australia
| | - Adam F. Lee
- Centre for Applied Materials and Industrial Chemistry (CAMIC)
- School of Science
- RMIT University
- Melbourne
- Australia
| | - Karen Wilson
- Centre for Applied Materials and Industrial Chemistry (CAMIC)
- School of Science
- RMIT University
- Melbourne
- Australia
| |
Collapse
|
11
|
Du P, Zhang X, Zhang S, Zhao Y, Zhang L, Zhang B, Yang B. CO
x
‐Resistant Oxidative Dehydrogenation of Cyclohexane Catalyzed by sp
3
@sp
2
Nanodiamonds towards Highly Selective Cyclohexene Production. ChemCatChem 2020. [DOI: 10.1002/cctc.202001380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Pengfei Du
- Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Science 457 Zhongshan Road Dalian 116023 P.R. China
- University of Chinese Academy of Sciences 19 Yuquan Road Beijing 100049 P.R. China
| | - Xin‐Xing Zhang
- Department of Chemistry James Franck Institute and Institute for Biophysical Dynamics The University of Chicago 929 E 57th Street Chicago Illinois 60637 USA
| | - Shaoqian Zhang
- Key Lab of Chemical Lasers Dalian Institute of Chemical Physics Chinese Academy of Science 457 Zhongshan Road Dalian 116023 P.R. China
| | - Yang Zhao
- Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Science 457 Zhongshan Road Dalian 116023 P.R. China
| | - Liyun Zhang
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences 72 Wenhua Road Shenyang 110016) P.R. China
| | - Bingsen Zhang
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences 72 Wenhua Road Shenyang 110016) P.R. China
| | - Bing Yang
- Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Science 457 Zhongshan Road Dalian 116023 P.R. China
| |
Collapse
|