1
|
Zheng S, Zhang Z, He S, Yang H, Atia H, Abdel-Mageed AM, Wohlrab S, Baráth E, Tin S, Heeres HJ, Deuss PJ, de Vries JG. Benzenoid Aromatics from Renewable Resources. Chem Rev 2024; 124:10701-10876. [PMID: 39288258 PMCID: PMC11467972 DOI: 10.1021/acs.chemrev.4c00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/25/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024]
Abstract
In this Review, all known chemical methods for the conversion of renewable resources into benzenoid aromatics are summarized. The raw materials that were taken into consideration are CO2; lignocellulose and its constituents cellulose, hemicellulose, and lignin; carbohydrates, mostly glucose, fructose, and xylose; chitin; fats and oils; terpenes; and materials that are easily obtained via fermentation, such as biogas, bioethanol, acetone, and many more. There are roughly two directions. One much used method is catalytic fast pyrolysis carried out at high temperatures (between 300 and 700 °C depending on the raw material), which leads to the formation of biochar; gases, such as CO, CO2, H2, and CH4; and an oil which is a mixture of hydrocarbons, mostly aromatics. The carbon selectivities of this method can be reasonably high when defined small molecules such as methanol or hexane are used but are rather low when highly oxygenated compounds such as lignocellulose are used. The other direction is largely based on the multistep conversion of platform chemicals obtained from lignocellulose, cellulose, or sugars and a limited number of fats and terpenes. Much research has focused on furan compounds such as furfural, 5-hydroxymethylfurfural, and 5-chloromethylfurfural. The conversion of lignocellulose to xylene via 5-chloromethylfurfural and dimethylfuran has led to the construction of two large-scale plants, one of which has been operational since 2023.
Collapse
Affiliation(s)
- Shasha Zheng
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Zhenlei Zhang
- State
Key Laboratory of Heavy Oil Processing, College of Chemical Engineering
and Environment, China University of Petroleum
(Beijing), 102249 Beijing, China
| | - Songbo He
- Joint International
Research Laboratory of Circular Carbon, Nanjing Tech University, Nanjing 211816, PR China
| | - Huaizhou Yang
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Hanan Atia
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Ali M. Abdel-Mageed
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Sebastian Wohlrab
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Eszter Baráth
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Sergey Tin
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Hero J. Heeres
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Peter J. Deuss
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Johannes G. de Vries
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| |
Collapse
|
2
|
Hou P, Su H, Jin K, Li Q, Yan W. Zirconium Phosphate-Pillared Zeolite MCM-36 for Green Production of γ-Valerolactone from Levulinic Acid via Catalytic Transfer Hydrogenation. Molecules 2024; 29:3779. [PMID: 39202858 PMCID: PMC11357094 DOI: 10.3390/molecules29163779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
γ-valerolactone (GVL), derived from biomass, is a crucial platform compound for biofuel synthesis and various industrial applications. Current methods for synthesizing GVL involve expensive catalysts and high-pressure hydrogen, prompting the search for greener alternatives. This study focuses on a novel zirconium phosphate (ZrP)-pillared zeolite MCM-36 derivative catalyst for converting levulinic acid (LA) to GVL using alcohol as a hydrogen source. The incorporation of ZrP significantly contributes to mesoporosity and greatly enhances the acidity of the catalysts. Additionally, we employed 31P MAS NMR to comprehensively investigate the influence of phosphorus species on both the acidity and the catalytic conversion of LA to GVL. By adjusting the Zr-to-P ratios, we synthesized catalysts with enhanced acidity, achieving high conversion of LA and selectivity for GVL. The catalyst exhibited high recyclability, showing only minor deactivation over the course of five cycles. Furthermore, the catalyst was successfully applied to the one-pot conversion of furfural to GVL, showcasing its versatility in biomass conversion. This study highlights the potential of the MCM-ZrP1 catalyst for sustainable biomass conversion and offers insights for future research in renewable energy technologies.
Collapse
Affiliation(s)
| | | | | | | | - Wenfu Yan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China; (P.H.); (H.S.); (K.J.); (Q.L.)
| |
Collapse
|
3
|
Cioc RC, Crockatt M, van der Waal JC, Bruijnincx PCA. The Interplay between Kinetics and Thermodynamics in Furan Diels-Alder Chemistry for Sustainable Chemicals Production. Angew Chem Int Ed Engl 2022; 61:e202114720. [PMID: 35014138 PMCID: PMC9304315 DOI: 10.1002/anie.202114720] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Indexed: 01/21/2023]
Abstract
Biomass-derived furanic platform molecules have emerged as promising building blocks for renewable chemicals and functional materials. To this aim, the Diels-Alder (DA) cycloaddition stands out as a versatile strategy to convert these renewable resources in highly atom-efficient ways. Despite nearly a century worth of examples of furan DA chemistry, clear structure-reactivity-stability relationships are still to be established. Detailed understanding of the intricate interplay between kinetics and thermodynamics in these very particular [4+2] cycloadditions is essential to push further development and truly expand the scope beyond the ubiquitous addend combinations of electron-rich furans and electron-deficient olefins. Herein, we provide pertinent examples of DA chemistry, taken from various fields, to highlight trends, establish correlations and answer open questions in the field with the aim to support future efforts in the sustainable chemicals and materials production.
Collapse
Affiliation(s)
- Răzvan C. Cioc
- Organic Chemistry and CatalysisDebye Institute for Nanomaterials ScienceFaculty of ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Marc Crockatt
- Department of Sustainable Process and Energy Systems, TNOLeeghwaterstraat 442628CADelftThe Netherlands
| | - Jan C. van der Waal
- Department of Sustainable Process and Energy Systems, TNOLeeghwaterstraat 442628CADelftThe Netherlands
| | - Pieter C. A. Bruijnincx
- Organic Chemistry and CatalysisDebye Institute for Nanomaterials ScienceFaculty of ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| |
Collapse
|
4
|
Park KS, Cho JM, Park YM, Kwon JH, Yu JS, Jeong HE, Choung JW, Bae JW. Enhanced thermal stability of Ni nanoparticles in ordered mesoporous supports for dry reforming of methane with CO2. Catal Today 2022. [DOI: 10.1016/j.cattod.2020.07.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
5
|
Cioc R, Crockatt M, Van der Waal JC, Bruijnincx P. The Interplay between Kinetics and Thermodynamics in Furan Diels‐Alder Chemistry for Sustainable Chemicals Production. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Razvan Cioc
- Utrecht University: Universiteit Utrecht Chemistry NETHERLANDS
| | - Marc Crockatt
- TNO Sustainable Process and Energy Systems NETHERLANDS
| | | | - Pieter Bruijnincx
- Utrecht University Chemistry Universiteitsweg99Netherlands 3584 CG Utrecht NETHERLANDS
| |
Collapse
|
6
|
Li Z, Jiang Y, Li Y, Zhang H, Li H, Yang S. Advances in Diels-Alder/aromatization of biomass furan derivatives towards renewable aromatic hydrocarbons. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02122b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effective upgrading of renewable resources into high value-added chemicals is of great significance to achieve the sustainable economic development, as well as the implementation of carbon neutral technologies practically....
Collapse
|
7
|
Is hydrolysis a bad news for p-xylene production from 2,5-dimethylfuran and ethylene? Mechanism investigation into the role of acid strength during 2,5-hexanedione conversion. J Catal 2021. [DOI: 10.1016/j.jcat.2021.07.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Ravasco JMJM, Gomes RFA. Recent Advances on Diels-Alder-Driven Preparation of Bio-Based Aromatics. CHEMSUSCHEM 2021; 14:3047-3053. [PMID: 34058082 PMCID: PMC8453924 DOI: 10.1002/cssc.202100813] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/21/2021] [Indexed: 05/08/2023]
Abstract
The preparation of high value-added chemicals from renewable resources is a crucial approach towards a sustainable economy. One prominent alternative to the production of petroleum-based chemicals from fossil resources is through the sequential Diels-Alder/aromatization reactions of biomass-derived furan platforms. This Concept is focused on the recent boom in bio-based furan DA strategies for aromatization of bio-based platform chemicals, particularly that of furfurals, ranging from indirect use and activation strategies to recent examples of direct DA reaction of these electron-withdrawing biomass-derived furans.
Collapse
Affiliation(s)
- Joao M. J. M. Ravasco
- Research Institute for Medicines (iMed.ULisboa)Faculty of PharmacyUniversity of LisbonAvenida Professor Gama Pinto1649-003LisbonPortugal
| | - Rafael F. A. Gomes
- Research Institute for Medicines (iMed.ULisboa)Faculty of PharmacyUniversity of LisbonAvenida Professor Gama Pinto1649-003LisbonPortugal
| |
Collapse
|
10
|
Kasipandi S, Ali M, Li Y, Bae JW. Phosphorus‐Modified Mesoporous Inorganic Materials for Production of Hydrocarbon Fuels and Value‐Added Chemicals. ChemCatChem 2020. [DOI: 10.1002/cctc.202000418] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Saravanan Kasipandi
- School of Chemical Engineering Sungkyunkwan University (SKKU) 2066 Seobu-ro Jangan-gu, Suwon Gyeonggi-do 16419 Republic of Korea
- Department of Chemical and Metallurgical Engineering School of Chemical Engineering Aalto University Kemistintie 1 P.O. Box 16100 Espoo FI-00076 Finland
| | - Mansoor Ali
- School of Chemical Engineering Sungkyunkwan University (SKKU) 2066 Seobu-ro Jangan-gu, Suwon Gyeonggi-do 16419 Republic of Korea
| | - Yongdan Li
- Department of Chemical and Metallurgical Engineering School of Chemical Engineering Aalto University Kemistintie 1 P.O. Box 16100 Espoo FI-00076 Finland
| | - Jong Wook Bae
- School of Chemical Engineering Sungkyunkwan University (SKKU) 2066 Seobu-ro Jangan-gu, Suwon Gyeonggi-do 16419 Republic of Korea
| |
Collapse
|