1
|
Słowik G, Rotko M, Ryczkowski J, Greluk M. Hydrogen Production from Methanol Steam Reforming over Fe-Modified Cu/CeO 2 Catalysts. Molecules 2024; 29:3963. [PMID: 39203041 PMCID: PMC11357062 DOI: 10.3390/molecules29163963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Fe-modified Cu catalysts with CeO2 support, prepared by the impregnation method, were subjected to physicochemical analysis and catalytic tests in the steam reforming of methanol (SRM). Physicochemical studies of the catalysts were carried out using the XRF, TEM, STEM-EDS, XRD, TPR and nitrogen adsorption/desorption methods. XRD, TEM studies and catalytic tests of the catalysts were carried out at two reduction temperatures, 260 °C and 400 °C, to determine the relationship between the form and oxidation state of the active phase of the catalysts and the catalytic properties of these systems in the SRM. Additionally, the catalysts after the reaction were analysed for the changes in the structure and morphology using TEM methods. The presented results show that the composition of the catalysts, morphology, structure, form and oxidation state of the Cu and Fe active metals in the catalysts and the reaction temperature significantly impact their activity, selectivity and stability in the SRM process. The gradual deactivation of the studied catalysts under SRM conditions could result from the forming of carbon deposits and/or the gradual oxidation of the copper and iron phases under the reaction conditions.
Collapse
Affiliation(s)
- Grzegorz Słowik
- Department of Chemical Technology, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, 3 Maria Curie-Skłodowska Square, 20-031 Lublin, Poland; (M.R.); (J.R.); (M.G.)
| | | | | | | |
Collapse
|
2
|
Wang Z, Zhou X, Wang G, Tong Q, Wan H, Dong L. High-Performance Ir 1/CeO 2 Single-Atom Catalyst for the Oxidation of Toluene. Inorg Chem 2024; 63:7241-7254. [PMID: 38581386 DOI: 10.1021/acs.inorgchem.3c04589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2024]
Abstract
The elimination of toluene is an obligatory target with increasing VOC emission in recent years. This study successfully prepared a single-atom Ir catalyst (Ir1/CeO2) by a simple incipient wetness impregnation method, confirmed by in situ CO DRIFTS and AC-HAADF-STEM. Compared to the cluster Ir catalyst (Ir/CeO2-C), Ir1/CeO2 exhibited excellent catalytic performance, stability, and water resistance for the oxidation of toluene. By Raman, H2-TPR, O2-TPD, and XPS experiments, abundant oxygen defects and a unique Ir3+-Ov-Ce3+ structure were formed for the Ir1/CeO2 sample because it had a lower oxygen vacancy formation energy. Furthermore, the DFT results revealed that the Ir1/CeO2 sample had a lower ring-opening energy barrier and adsorption energy of the ring-opening products, which was the rate-determining step for the oxidation of toluene. This work provides instructive insights into the construction of Ir/CeO2 catalysts for the highly efficient removal of VOCs.
Collapse
Affiliation(s)
- Zhiqiang Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, China
| | - Xiaomei Zhou
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Gehui Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, China
| | - Qing Tong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, China
| | - Haiqin Wan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, China
| | - Lin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, China
| |
Collapse
|
3
|
Li S, Wang F, Xie Z, Ng D, Shen B. A novel core-shell structured Fe@CeO2-ZIF-8 catalyst for the reduction of NO by CO. J Catal 2023. [DOI: 10.1016/j.jcat.2023.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
4
|
Effects of Preparation Methods of Pd Supported on (001) Crystal Facets Exposed TiO2 Nanosheets for Toluene Catalytic Combustion. Catalysts 2022. [DOI: 10.3390/catal12111406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A series of TiO2 nanosheets-supported Pd catalysts were individually prepared by impregnation, deposition–precipitation, photo-deposition and in situ reduction by NaBH4. For comparison, Pd supported on P25 was prepared by the impregnation method. The experimental results show that the catalytic efficiency of the catalyst prepared with titanium dioxide nano sheet as the support is higher than that of the catalyst supported with P25. Its excellent properties are as follows: The resulting sample indicates that TiO2 nanosheets-supported Pd catalyst display an improved activity than Pd/P25, whose temperature of 100% complete conversion of toluene decreased by 40 ℃ at the most. The Pd particles on the catalyst synthesized by the light deposition method and the NaBH4 reduction method are more obvious, while the Pd particles on the catalyst synthesized by the immersion method and the deposition–precipitation method are less obvious, which shows that the latter two methods are more conducive to the dispersion of Pd. The good catalytic activity may be due to the better exposed mirror and dispersion of titanium dioxide nanosheets. This is mainly related to the exposed crystal plane of the nanosheet TiO2 (001), which made it easier to form the oxygen vacancy. Moreover, among all of the TiO2 nanosheets-supported Pd catalysts, Pd/TiO2 NS (TiO2 NS means TiO2 nanosheets) prepared by the impregnation method show the highest catalytic activity. The XRD results show that Pd prepared by impregnation is more dispersed and smaller. This is due to PdO being dispersed more efficiently than the others, leading to more Pd active sites.
Collapse
|
5
|
Liu W, Sheng H, Zhu L, Zhang Y, Liu W, Zhao Y, Li Q, Peng Y, Wang Z. The preparation of ultrastable Al 3+ doped CeO 2 supported Au catalysts: Strong metal-support interaction for superior catalytic activity towards CO oxidation. J Colloid Interface Sci 2022; 627:53-63. [PMID: 35841708 DOI: 10.1016/j.jcis.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 11/20/2022]
Abstract
The classical strong metal-support interaction (SMSI) plays a key role in improving thermal stability for supported Au catalysts. However, it always decreases the catalytic activity because of the encapsulation of Au species by support. Herein, we demonstrate that Al3+ is a functional additive which could effectively improve both catalytic activity and sintering resistant property for H2 pretreated Al3+ doped CeO2 supported Au (AuCeAl) catalyst at high temperature. The physical characterization and in-situ DRIFTS results provide insight that more oxygen vacancies generated by Al3+ doping could be as preferential adsorption sites for CO molecules when the encapsulation of Au species occurred, which is certificated by an accelerated formation of bicarbonate species. In the meantime, smaller Au nanoparticles with higher dispersion (2.8 nm, 85.63%) is achieved in AuCeAl catalysts, compared with that in CeO2 supported Au (AuCe) catalysts (5.1 nm, 36.17%). Additionally, the as-prepared AuCeAl catalysts also have superior catalytic performance even after calcination at 800 °C in air.
Collapse
Affiliation(s)
- Wei Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Hui Sheng
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Liu Zhu
- Key Laboratory of Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology and Electron Microscopy Centre of Lanzhou University, Lanzhou University, Lanzhou 730000, China
| | - Yiwen Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Wenxu Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Yuwei Zhao
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yong Peng
- Key Laboratory of Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology and Electron Microscopy Centre of Lanzhou University, Lanzhou University, Lanzhou 730000, China.
| | - Zhongpeng Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China.
| |
Collapse
|
6
|
Chen L, Zhang D, Chen Y, Liu F, Zhang J, Fu M, Wu J, Ye D. Porous stainless-steel fibers supported CuCeFeO x/Zeolite catalysts for the enhanced CO oxidation: Experimental and kinetic studies. CHEMOSPHERE 2022; 291:132778. [PMID: 34742759 DOI: 10.1016/j.chemosphere.2021.132778] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
To develop novel catalysts of high-performance and cost-effectiveness, and to investigate the reaction kinetics of CO oxidation, ternary CuCeFeOx catalysts supported on zeolite/PSF (porous stainless-steel fibers) were synthesized for the first time. Effects of different Ce/Fe ratios, loading amounts, calcination temperatures, and reaction kinetics were investigated. Remarkably improved catalytic performance was achieved in the PSF-supported catalysts compared to the granular ones, owing to the increased mass/heat transfer efficiency and the high dispersion of active metal oxide species anchored on the zeolite layer. The Cu3Ce12Fe4-400 sample exhibited the best catalytic activity with a temperature difference in T90 of almost 40 °C lower than the worst one. Characterization results from XRD, FTIR, TEM, XPS, H2-TPR, etc. revealed that the promoted reducibility of metal oxides and formation of more oxygen vacancies significantly contributed to the enhanced catalytic activity. Furthermore, a generalized rate expression was derived from intrinsic and macro kinetic studies by assuming the conversion of CO to CO2 as the rate-determining step, in which CO oxidation over the PSF-supported catalysts followed the pseudo-first-order kinetic established by the Langmuir-Hinshelwood type mechanism.
Collapse
Affiliation(s)
- Longwen Chen
- School of Environment and Energy, South China University of Technology, Guangzhou, 510640, China; College of Light Chemical Industry and Materials Engineering, Shunde Polytechnic, Foshan, 528333, China; National Engineering Laboratory for VOCs Pollution Control Technology and Equipment (SCUT), Guangzhou, 510640, China
| | - Dong Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510640, China; National Engineering Laboratory for VOCs Pollution Control Technology and Equipment (SCUT), Guangzhou, 510640, China.
| | - Yanwu Chen
- College of Light Chemical Industry and Materials Engineering, Shunde Polytechnic, Foshan, 528333, China
| | - Feng Liu
- College of Light Chemical Industry and Materials Engineering, Shunde Polytechnic, Foshan, 528333, China
| | - Jun Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510640, China; National Engineering Laboratory for VOCs Pollution Control Technology and Equipment (SCUT), Guangzhou, 510640, China
| | - Mingli Fu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510640, China; National Engineering Laboratory for VOCs Pollution Control Technology and Equipment (SCUT), Guangzhou, 510640, China
| | - Junliang Wu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510640, China; National Engineering Laboratory for VOCs Pollution Control Technology and Equipment (SCUT), Guangzhou, 510640, China
| | - Daiqi Ye
- School of Environment and Energy, South China University of Technology, Guangzhou, 510640, China; National Engineering Laboratory for VOCs Pollution Control Technology and Equipment (SCUT), Guangzhou, 510640, China.
| |
Collapse
|