1
|
Bashir SM, Gyenge EL. Improving the Stability of Gas Diffusion Electrodes for CO 2 Electroreduction to Formate with Sn and In-Based Catalysts at 500 mA cm -2: Effect of Electrode Design and Operation Mode. ACS OMEGA 2025; 10:1493-1509. [PMID: 39829475 PMCID: PMC11740123 DOI: 10.1021/acsomega.4c09202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 01/22/2025]
Abstract
The electrochemical carbon dioxide reduction reaction (CO2RR) using renewable electricity sources could provide a sustainable solution for generating valuable chemicals, such as formate salt or formic acid. However, an efficient, stable, and scalable electrode generating formate at industrially viable current densities (>100 mA cm-2) is yet to be developed. Sn or In-based catalysts in gas diffusion electrodes (GDE) can efficiently produce formate. However, their long-term durability is limited owing to catalyst deactivation, carbonate deposition, and electrode flooding. Herein, a systematic study of 20 cm2 GDEs with SnO2 and In2O3 catalyst layers is presented in conjunction with various electrode operation strategies (i.e., flow-by vs flow through, dry vs humidified CO2, continuous vs reverse polarity pulse electrolysis). It is demonstrated that the incorporation of CeO2 nanoparticles as a promoter in either SnO2 or In2O3 catalyst layers coupled with intermittent reverse polarity pulse operation dramatically improves the GDE stability during 12 h of tests at 500 mA cm-2 with over 90% formate Faradaic efficiency. Due to its strong oxidizing capacity, CeO2 helps Sn and In regain their valence state of + IV and + III, respectively, which are in situ reduced during CO2RR, as shown by the surface characterization of the electrodes. The effect of the initial particle size of SnO2 and reverse polarity pulse on the catalytic activity, durability, and carbonate salt precipitation in the GDE have also been addressed. Regarding two-phase flow dynamics, the quasi-convective gas flow through the GDE was more beneficial than the gas flow-by mode for enabling stable operation at high current densities (up to 500 mA cm-2). The synergistic approach of catalyst layer engineering coupled with diverse GDE operation modes explored here is promising for the scale-up of efficient and durable reactors for the CO2RR to formate and CO2 redox flow batteries.
Collapse
Affiliation(s)
- Shahid M Bashir
- Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver V6T 1Z3, Canada
- Clean Energy Research Centre, the University of British Columbia, 2360 East Mall, Vancouver V6T 1Z3, Canada
| | - Előd L Gyenge
- Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver V6T 1Z3, Canada
- Clean Energy Research Centre, the University of British Columbia, 2360 East Mall, Vancouver V6T 1Z3, Canada
| |
Collapse
|
2
|
Li J, Zhou S, Li P, Zhou S, Wan Q, Guo H, Lin S. Elucidating the intrinsic relationship between redox properties of CeO2 and CH4 oxidation activity: A theoretical perspective. J Chem Phys 2024; 161:174707. [PMID: 39494794 DOI: 10.1063/5.0232026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024] Open
Abstract
Methane (CH4) oxidation is an important reaction to reduce the greenhouse effect caused by incomplete combustion of CH4. Here, we explored the mechanism of CH4 oxidation catalyzed by CeO2 and Ni-doped CeO2, focusing on the redox properties of these catalyst surfaces, using density functional theory (DFT). We found that the barriers for CH4* activation and H2O* formation are correlated with the surface redox capacity, which is enhanced by Ni doping. Furthermore, the complete reaction mechanism is explored by DFT calculations and microkinetic simulations on bare and Ni-doped CeO2 surfaces. Our calculations suggest that the doping of Ni leads to a much higher overall reactivity, due to a balance between the CH4* activation and H2O* formation steps. These results provide insights into the CH4 oxidation mechanism and the intrinsic relationship between redox properties and the activity of CeO2 surfaces.
Collapse
Affiliation(s)
- Juan Li
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Shuyun Zhou
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Peng Li
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Shulan Zhou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, Shandong, China
| | - Qiang Wan
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Hua Guo
- Department of Chemistry and Chemical Biology, Center for Computational Chemistry, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Sen Lin
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen 361005, China
| |
Collapse
|
3
|
Jiang J, Gong B, Xu G, Zhao T, Ding H, Feng Y, Li Y, Zhang L. Electron regulation of CeO 2 on CoP multi-shell hetero-junction micro-sphere towards highly efficient water oxidation. J Colloid Interface Sci 2024; 668:110-119. [PMID: 38669988 DOI: 10.1016/j.jcis.2024.04.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/22/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024]
Abstract
CeO2 has been identified as a significant cocatalyst to enhance the electrocatalytic activity of transition metal phosphides (TMPs). However, the electrocatalytic mechanism by which CeO2 enhances the catalytic activity of TMP remains unclear. In this study, we have successfully developed a unique CeO2-CoP-1-4 multishell microsphere heterostructure catalyst through a simple hydrothermal and calcination process. CeO2-CoP-1-4 exhibits great potential for electrocatalytic oxygen evolution reaction (OER), requiring only an overpotential of 254 mV to achieve a current density of 10 mA cm-2. Moreover, CeO2-CoP-1-4 demonstrates excellent operating durability lasting for 55 h. The presence of CeO2 as a cocatalyst can regulate the microsphere structure of CoP, the resulting multishell microsphere structure can shorten the mass transfer distance, and improve the utilization rate of the active site. Furthermore, in situ Raman and ex situ characterizations, and DFT theoretical calculation results reveal that CeO2 can effectively regulates the electronic structure of Co species, reduces the reaction free energy of rate-limiting step, thus increase the reaction kinetic. Overall, this study provides experimental and theoretical evidence to better comprehend the mechanism and structure evolution of CeO2 in enhancing the OER performance of CoP, offering a unique design inspiration for the development of efficient hollow heterojunction electrocatalysts.
Collapse
Affiliation(s)
- Jiahui Jiang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Bingbing Gong
- College of Chemical Engineering, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Guancheng Xu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Ting Zhao
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Hui Ding
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Yuying Feng
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Yixuan Li
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Li Zhang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China; College of Chemical Engineering, Xinjiang University, Urumqi 830017, Xinjiang, PR China.
| |
Collapse
|
4
|
Moxon S, Symington AR, Tse JS, Flitcroft JM, Skelton JM, Gillie LJ, Cooke DJ, Parker SC, Molinari M. Composition-dependent morphologies of CeO 2 nanoparticles in the presence of Co-adsorbed H 2O and CO 2: a density functional theory study. NANOSCALE 2024; 16:11232-11249. [PMID: 38779821 DOI: 10.1039/d4nr01296h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Catalytic activity is affected by surface morphology, and specific surfaces display greater activity than others. A key challenge is to define synthetic strategies to enhance the expression of more active surfaces and to maintain their stability during the lifespan of the catalyst. In this work, we outline an ab initio approach, based on density functional theory, to predict surface composition and particle morphology as a function of environmental conditions, and we apply this to CeO2 nanoparticles in the presence of co-adsorbed H2O and CO2 as an industrially relevant test case. We find that dissociative adsorption of both molecules is generally the most favourable, and that the presence of H2O can stabilise co-adsorbed CO2. We show that changes in adsorption strength with temperature and adsorbate partial pressure lead to significant changes in surface stability, and in particular that co-adsorption of H2O and CO2 stabilizes the {100} and {110} surfaces over the {111} surface. Based on the changes in surface free energy induced by the adsorbed species, we predict that cuboidal nanoparticles are favoured in the presence of co-adsorbed H2O and CO2, suggesting that cuboidal particles should experience a lower thermodynamic driving force to reconstruct and thus be more stable as catalysts for processes involving these species.
Collapse
Affiliation(s)
- Samuel Moxon
- Department of Physical and Life Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.
| | - Adam R Symington
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Joshua S Tse
- Department of Physical and Life Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.
| | - Joseph M Flitcroft
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Jonathan M Skelton
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Lisa J Gillie
- Department of Physical and Life Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.
| | - David J Cooke
- Department of Physical and Life Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.
| | - Stephen C Parker
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Marco Molinari
- Department of Physical and Life Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.
| |
Collapse
|
5
|
Shen X, Li Z, Xu J, Li W, Tao Y, Ran J, Yang Z, Sun K, Yao S, Wu Z, Rac V, Rakic V, Du X. Upgrading the low temperature water gas shift reaction by integrating plasma with a CuOx/CeO2 catalyst. J Catal 2023. [DOI: 10.1016/j.jcat.2023.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
6
|
Trends in High-Temperature H2 Production on CeO2 Co-Doped with Trivalent Cations in Solid Oxide Electrolysis Cells. J Catal 2023. [DOI: 10.1016/j.jcat.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
7
|
Röckert A, Kullgren J, Hermansson K. Predicting Frequency from the External Chemical Environment: OH Vibrations on Hydrated and Hydroxylated Surfaces. J Chem Theory Comput 2022; 18:7683-7694. [PMID: 36458913 DOI: 10.1021/acs.jctc.2c00135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Robust correlation curves are essential to decipher structural information from IR-vibrational spectra. However, for surface-adsorbed water and hydroxides, few such correlations have been presented in the literature. In this paper, OH vibrational frequencies are correlated against 12 structural descriptors representing the quantum mechanical or geometrical environment, focusing on those external to the vibrating molecule. A nonbiased fitting procedure based on Gaussian process regression (GPR) was used alongside simple analytical functional forms. The training data consist of 217 structurally unique OH groups from 38 water/metal oxide interface systems for MgO, CaO and CeO2, all optimized at the DFT level, and the fully anharmonic and uncoupled OH vibrational signatures were calculated. Among our results, we find the following: (i) The intermolecular R(H···O) hydrogen bond distance is particularly strong, indicating the primary cause of the frequency shift. (ii) Similarly, the electric field along the H-bond vector is also a good descriptor. (iii) Highly detailed machine learning descriptors (ACSF, SOAP) are less intuitive but were found to be more capable descriptors. (iv) Combinations of geometric and QM descriptors give the best predictions, supplying complementary information.
Collapse
Affiliation(s)
- Andreas Röckert
- Department of Chemistry, Ångström Laboratory, Uppsala University, Uppsala751 21, Sweden
| | - Jolla Kullgren
- Department of Chemistry, Ångström Laboratory, Uppsala University, Uppsala751 21, Sweden
| | - Kersti Hermansson
- Department of Chemistry, Ångström Laboratory, Uppsala University, Uppsala751 21, Sweden
| |
Collapse
|
8
|
Pushkar AP, Varghese JJ. Impact of surface-active site heterogeneity and surface hydroxylation in Ni doped ceria catalysts on oxidative dehydrogenation of propane. J Catal 2022. [DOI: 10.1016/j.jcat.2022.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Li T, Wang Q, Wang Z. Oxygen Vacancy Injection on (111) CeO 2 Nanocrystal Facets for Efficient H 2O 2 Detection. BIOSENSORS 2022; 12:bios12080592. [PMID: 36004988 PMCID: PMC9405991 DOI: 10.3390/bios12080592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/25/2022] [Accepted: 07/30/2022] [Indexed: 05/14/2023]
Abstract
Facet and defect engineering have achieved great success in improving the catalytic performance of CeO2, but the inconsistent reports on the synergistic effect of facet and oxygen vacancy and the lack of investigation on the heavily doped oxygen vacancy keeps it an attractive subject. Inspired by this, CeO2 nanocrystals with selectively exposed crystalline facets (octahedron, cube, sphere, rod) and abundant oxygen vacancies have been synthesized to investigate the synergistic effect of facet and heavily doped oxygen vacancy. The contrasting electrochemical behavior displayed by diverse reduced CeO2 nanocrystals verifies that oxygen vacancy acts distinctly on different facets. The thermodynamically most stable CeO2 octahedron enclosed by heavily doped (111) facets surprisingly exhibited the optimum non-enzymatic H2O2 sensing performance, with a high sensitivity (128.83 µA mM-1 cm-2), a broad linear range (20 µM~13.61 mM), and a low detection limit (1.63 µM). Meanwhile, the sensor presented satisfying selectivity, repeatability, stability, as well as its feasibility in medical disinfectants. Furthermore, the synergistic effect of facet and oxygen vacancy was clarified by the inclined distribution states of oxygen vacancy and the electronic transmission property. This work enlightens prospective research on the synergistic effect of alternative crystal surface engineering strategies.
Collapse
|
10
|
Bajaj A, Kulik HJ. Eliminating Delocalization Error to Improve Heterogeneous Catalysis Predictions with Molecular DFT + U. J Chem Theory Comput 2022; 18:1142-1155. [PMID: 35081711 DOI: 10.1021/acs.jctc.1c01178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Approximate semilocal density functional theory (DFT) is known to underestimate surface formation energies yet paradoxically overbind adsorbates on catalytic transition-metal oxide surfaces due to delocalization error. The low-cost DFT + U approach only improves surface formation energies for early transition-metal oxides or adsorption energies for late transition-metal oxides. In this work, we demonstrate that this inefficacy arises due to the conventional usage of metal-centered atomic orbitals as projectors within DFT + U. We analyze electron density rearrangement during surface formation and O atom adsorption on rutile transition-metal oxides to highlight that a standard DFT + U correction fails to tune properties when the corresponding density rearrangement is highly delocalized across both metal and oxygen sites. To improve both surface properties simultaneously while retaining the simplicity of a single-site DFT + U correction, we systematically construct multi-atom-centered molecular-orbital-like projectors for DFT + U. We demonstrate this molecular DFT + U approach for tuning adsorption energies and surface formation energies of minimal two-dimensional models of representative early (i.e., TiO2) and late (i.e., PtO2) transition-metal oxides. Molecular DFT + U simultaneously corrects adsorption energies and surface formation energies of multilayer models of rutile TiO2(110) and PtO2(110) to resolve the paradoxical description of surface stability and surface reactivity of semilocal DFT.
Collapse
Affiliation(s)
- Akash Bajaj
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
11
|
Pérez-Bailac P, Lustemberg PG, Ganduglia-Pirovano MV. Facet-dependent stability of near-surface oxygen vacancies and excess charge localization at CeO 2surfaces. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:504003. [PMID: 34479232 DOI: 10.1088/1361-648x/ac238b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/03/2021] [Indexed: 05/25/2023]
Abstract
To study the dependence of the relative stability of surface (VA) and subsurface (VB) oxygen vacancies with the crystal facet of CeO2, the reduced (100), (110) and (111) surfaces, with two different concentrations of vacancies, were investigated by means of density functional theory (DFT + U) calculations. The results show that the trend in the near-surface vacancy formation energies for comparable vacancy spacings, i.e. (110) < (100) < (111), does not follow the one in the surface stability of the facets, i.e. (111) < (110) < (100). The results also reveal that the preference of vacancies for surface or subsurface sites, as well as the preferred location of the associated Ce3+polarons, are facet- and concentration-dependent. At the higher vacancy concentration, theVAis more stable than theVBat the (110) facet whereas at the (111), it is the other way around, and at the (100) facet, both theVAand theVBhave similar stability. The stability of theVAvacancies, compared to that of theVB, is accentuated as the concentration decreases. Nearest neighbor polarons to the vacant sites are only observed for the less densely packed (110) and (100) facets. These findings are rationalized in terms of the packing density of the facets, the lattice relaxation effects induced by vacancy formation and the localization of the excess charge, as well as the repulsive Ce3+-Ce3+interactions.
Collapse
Affiliation(s)
- Patricia Pérez-Bailac
- Instituto de Catálisis y Petroleoquímica (ICP-CSIC), C/Marie Curie 2, 28049 Madrid, Spain
- PhD Programme in Applied Chemistry, Doctoral School, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 2, 28049 Ciudad Universitaria de Cantoblanco, Madrid, Spain
| | - Pablo G Lustemberg
- Instituto de Catálisis y Petroleoquímica (ICP-CSIC), C/Marie Curie 2, 28049 Madrid, Spain
- Instituto de Física Rosario (IFIR-CONICET), Ocampo y Esmeralda, S2000EKF Rosario, Santa Fe, Argentina
| | | |
Collapse
|
12
|
Wu T, Vegge T, Hansen HA. Enhanced activity for electrocatalytic H2 production through cooperative Pr and Bi co-doping of CeO2 in solid oxide electrolysis cells. J Catal 2021. [DOI: 10.1016/j.jcat.2021.08.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Govind Rajan A, Martirez JMP, Carter EA. Coupled Effects of Temperature, Pressure, and pH on Water Oxidation Thermodynamics and Kinetics. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ananth Govind Rajan
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, Karnataka 560012, India
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544-5263, United States
| | - John Mark P. Martirez
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095-1592, United States
| | - Emily A. Carter
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544-5263, United States
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095-1592, United States
- Office of the Chancellor, University of California, Los Angeles, Box 951405, Los Angeles, California 90095-1405, United States
| |
Collapse
|
14
|
Qin Y, Su Y. A DFT Study on Heterogeneous Pt/CeO
2
(110) Single Atom Catalysts for CO Oxidation. ChemCatChem 2021. [DOI: 10.1002/cctc.202100643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yan‐Yang Qin
- School of Chemistry Xi'an Key Laboratory of Sustainable Energy Materials Chemistry State Key Laboratory of Electrical Insulation and Power Equipment Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Ya‐Qiong Su
- School of Chemistry Xi'an Key Laboratory of Sustainable Energy Materials Chemistry State Key Laboratory of Electrical Insulation and Power Equipment Xi'an Jiaotong University Xi'an 710049 P. R. China
- Laboratory of Inorganic Materials and Catalysis Department of Chemical Engineering and Chemistry Eindhoven University of Technology 5600 MB Eindhoven (The Netherlands
- State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| |
Collapse
|
15
|
Núñez-Rico JL, Rellán-Piñeiro M, Puértolas B, Vidal-Ferran A, López N, Pérez-Ramírez J, Wershofen S. Enhanced Performance of Zirconium-Doped Ceria Catalysts for the Methoxycarbonylation of Anilines. Chemistry 2020; 26:16129-16137. [PMID: 32677719 DOI: 10.1002/chem.202003201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Indexed: 11/09/2022]
Abstract
The methoxycarbonylation of anilines stands as an attractive method for the phosgene-free production of carbamates. Despite the high yields obtained for ceria catalysts, the reduction of the amount of side products and the prevention of catalyst deactivation still represent major hurdles in this chemistry. One advantage of ceria is the possibility of tuning its reactivity by doping its lattice with other metals. In the present work, a series of doped ceria-based materials, prepared by substitution with metals, are evaluated in the methoxycarbonylation of 2,4-diaminotoluene with dimethyl carbonate. Among all catalysts, containing Eu, Hf, La, Pr, Sm, Tb, Y or Zr, ceria promoted with 2 mol % Zr exhibited 96 % selectivity towards the desired carbamates, improving the pure CeO2 catalyst. Density functional theory demonstrates that two descriptors are needed: 1) a geometric factor that governs the reduction of energy barriers for carbamate formation through ureas; 2) catalyst basicity as N-H bonds need to be activated. Assessment in subsequent reaction cycles revealed that the CeO2 -ZrO2 catalyst is more stable than bulk CeO2 , along with the reduction of fouling processes.
Collapse
Affiliation(s)
- José Luis Núñez-Rico
- Department of Inorganic and Organic Chemistry, University of Barcelona, C. Martí i Franquès 1-11, 08028, Barcelona, Spain.,Institute of Chemical Research of Catalonia (ICIQ) and The Barcelona Institute of Science and Technology, Avgda. Països Catalans 16, 43007, Tarragona, Spain
| | - Marcos Rellán-Piñeiro
- Institute of Chemical Research of Catalonia (ICIQ) and The Barcelona Institute of Science and Technology, Avgda. Països Catalans 16, 43007, Tarragona, Spain
| | - Begoña Puértolas
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Anton Vidal-Ferran
- Department of Inorganic and Organic Chemistry, University of Barcelona, C. Martí i Franquès 1-11, 08028, Barcelona, Spain.,Institute of Chemical Research of Catalonia (ICIQ) and The Barcelona Institute of Science and Technology, Avgda. Països Catalans 16, 43007, Tarragona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Pg. Lluís Companys 23, 08010, Barcelona, Spain.,Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028, Barcelona, Spain
| | - Núria López
- Institute of Chemical Research of Catalonia (ICIQ) and The Barcelona Institute of Science and Technology, Avgda. Països Catalans 16, 43007, Tarragona, Spain
| | - Javier Pérez-Ramírez
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Stefan Wershofen
- Covestro (Deutschland) AG, Kaiser-Wilhelm-Allee 60, 51373, Leverkusen, Germany
| |
Collapse
|