1
|
Xiao J, Wang Y, Xiao B, Liu B. Electrochemical hydrogenative coupling of nitrobenzene into azobenzene over a mesoporous palladium-sulfur cathode. Chem Sci 2025:d4sc08608b. [PMID: 40303459 PMCID: PMC12036148 DOI: 10.1039/d4sc08608b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 04/14/2025] [Indexed: 05/02/2025] Open
Abstract
Azobenzene (AZO) and its derivatives are of great importance in the dyestuff and pharmaceutical industries; however, their sustainable synthesis is much slower than expected due to the lack of high-performance catalysts. In this work, we report a robust yet highly efficient catalyst of PdS mesoporous nanospheres (MNSs) with confined mesostructures and binary elemental composition that achieved sustainable electrosynthesis of value-added AZO by selective hydrogenative coupling of nitrobenzene (NB) feedstocks in H2O under ambient conditions. Using a renewable electricity source and H2O, binary PdS MNSs exhibited a remarkable NB conversion of 95.4%, impressive AZO selectivity of 93.4%, and good cycling stability in selective NB hydrogenation reaction (NBHR) electrocatalysis. Detailed mechanism studies revealed that the confined mesoporous microenvironment of PdS MNSs facilitated the hydrogenative coupling of key intermediates (nitrosobenzene and phenylhydroxylamine) into AZO and/or azoxybenzene (AOB), while their electron-deficient S sites stabilized the Pd-spillovered active H* and inhibited the over-hydrogenation of AZO/AOB into AN. By coupling with the anodic methanol oxidation reaction (MOR), the (-)NBHR‖MOR(+) two-electrode system exhibits much better NB-to-AZO performance in a sustainable and energy-efficient manner. This work thus paves the way for designing functional mesoporous metal alloy electrocatalysts applied in the sustainable electrosynthesis of industrial value-added chemicals.
Collapse
Affiliation(s)
- Jie Xiao
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Yanzhi Wang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Bo Xiao
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Ben Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| |
Collapse
|
2
|
Nayak RR, Khairun S H, Parveen G, Garg A, Chumachenko YA, Shu R, Gupta NK. A Review on Biomass-Derived Carbon Quantum Dots: Emerging Catalysts for Hydrogenation Catalysis. Chem Asian J 2025; 20:e202401005. [PMID: 39656073 DOI: 10.1002/asia.202401005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/07/2024] [Indexed: 03/19/2025]
Abstract
The circular economy and the depletion of Earth's resources highlight the need to transform waste into value-added emerging materials like carbon quantum dots (CQDs), which show great promise in energy storage, catalysis, and other applications. The production of catalytically active CQDs from biomass garners significant attention due to their unique advantages, such as ease of availability, natural abundance, renewability, low cost, and environmental friendliness. This review addresses the synthesis of CQDs from biomass, the factors influencing their properties and performance, and their diverse applications in catalytic hydrogenation reactions, selective reduction of nitroaromatic compounds, and azo dyes. Recent studies demonstrate that biomass-derived CQDs exhibit significantly improved catalytic activity, selectivity, and stability, effectively addressing the long-standing challenges of low activity and poor stability in catalysts derived from conventional sources.
Collapse
Affiliation(s)
- Ripsa Rani Nayak
- Centre for Sustainable Technologies, Indian Institute of Science, Gulmohar Marg, Mathikere, Bengaluru, 560012, India
| | - Hafila Khairun S
- Centre for Sustainable Technologies, Indian Institute of Science, Gulmohar Marg, Mathikere, Bengaluru, 560012, India
| | - Gazala Parveen
- Centre for Sustainable Technologies, Indian Institute of Science, Gulmohar Marg, Mathikere, Bengaluru, 560012, India
| | - Ayesha Garg
- Centre for Sustainable Technologies, Indian Institute of Science, Gulmohar Marg, Mathikere, Bengaluru, 560012, India
| | - Yulia A Chumachenko
- Center of New Chemical Technologies BIC, Boreskov Institute of Catalysis, Neftezavodskaya st., 54, 644040, Omsk, Russia
| | - Riyang Shu
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Navneet Kumar Gupta
- Centre for Sustainable Technologies, Indian Institute of Science, Gulmohar Marg, Mathikere, Bengaluru, 560012, India
| |
Collapse
|
3
|
Zhang JZ, Zhang YB, Chai HL, Luo HL, Du CX, Huang RW, Zang SQ. Selectivity Modulation of Multistep Reduction Reactions by Gold Nanoclusters. Angew Chem Int Ed Engl 2025; 64:e202413418. [PMID: 39294887 DOI: 10.1002/anie.202413418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/21/2024]
Abstract
The selective synthesis of valuable azo- and azoxyaromatic chemicals via transfer coupling of nitroaromatic compounds has been achieved by fine-tuning the catalyst structure. Here, a direct method to modulate nitrobenzene reduction and selectively alter the product from azobenzene to azoxybenzene by employing the size effect of Au is reported. Au nanoclusters (NCs) with smaller sizes embedded in ZIF-8 controllably converted nitrobenzene into azoxybenzene, while supported Au nanoparticles (NPs) selectively catalyzed nitrobenzene reduction to azobenzene. X-ray photoelectron spectroscopy (XPS) and Diffuse reflectance infrared Fourier transform spectroscopy on CO adsorption (CO-DRIFTS) of Au NC/ZIF-8 revealed a higher valence state and a lower electron density of Au than that of Au NP/ZIF-8, combined with the desorption of azoxybenzene from the Au NC and Au NP surface, suggesting that the Au NCs with lower electron density exhibit stronger adsorption. Density functional theory (DFT) calculations and charge density difference maps indicated that azoxybenzene bonded to Au NC/ZIF-8 with greater adsorption energy, resulting in more electron transfer between azoxybenzene and the generated Au sites, which inhibited further reduction of azoxybenzene and resulted in high azoxybenzene selectivity. The application of the size effect of Au particles to regulate nitrobenzene transfer coupling provided new insights into the structure-selectivity relationships.
Collapse
Affiliation(s)
- Jing-Zheng Zhang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Yi-Bao Zhang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Hui-Li Chai
- Henan Key Laboratory of Crystalline Molecular Functional Materials, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Hui-Ling Luo
- Henan Key Laboratory of Crystalline Molecular Functional Materials, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Chen-Xia Du
- Henan Key Laboratory of Crystalline Molecular Functional Materials, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Ren-Wu Huang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
4
|
Tang W, Liu Y, Jin Y, Wang Y, Shi W, Ma P, Niu J, Wang J. Photocatalytic Reduction of Nitrobenzene to Aniline by an Intriguing {Ru(C 6H 6)}-Based Heteropolytungstate. Inorg Chem 2024; 63:6260-6267. [PMID: 38517738 DOI: 10.1021/acs.inorgchem.3c04450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
In this paper, we have successfully synthesized a structurally novel heteropolytungstate via coordination of four {Ru(C6H6)} and trivacant {TeW9O33} clusters, formulated as Cs4Na2H2[Te2W20O72(H2O){(C6H6)Ru}4]·12H2O (1). Compound 1 inherited the strong absorption of [Ru(C6H6)Cl2]2 in the visible region and {TeW9O33} in the UV region, providing a good basis for photocatalysis. As expected, compound 1 showed good photocatalytic activity in the visible-light-driven reduction of nitrobenzene using N2H4·H2O as a reductant with a yield of 99.8%, a high turnover number (TON = 330), and a high turnover frequency (TOF = 24 h-1). The cyclic experiment of nitrobenzene reduction indicated that compound 1 was an effective and stable heterogeneous catalyst. Finally, the nitrobenzene reduction pathway was affirmed using condensation with azobenzene as a reaction intermediate based on control experiments.
Collapse
Affiliation(s)
- Wei Tang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Yanan Liu
- Puyang Institute of Technology, Henan University, Puyang, Henan 457000, P. R. China
| | - Yuzhen Jin
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Yuting Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Weixia Shi
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| |
Collapse
|
5
|
Wang J, Jiang J, Li Z. Efficient one-pot syntheses of secondary amines from nitro aromatics and benzyl alcohols over Pd/NiTi-LDH under visible light. Dalton Trans 2023; 52:16935-16942. [PMID: 37929331 DOI: 10.1039/d3dt02821f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Solar energy-induced cascade/tandem reactions in one-pot are sustainable and green. Herein, the Pd/NiTi-LDH nanocomposite, with Pd nanoparticles (NPs) (∼3-6 nm) deposited on NiTi-LDH nanosheets, was obtained and was applied in the reaction between nitro aromatics and alcohols to synthesize secondary amines under visible light. The superior performance observed over the as-obtained Pd/NiTi-LDH nanocomposite for this reaction can be attributed to a successful merging of Pd-based hydrogenation and LDH-based photocatalysis, in which consecutive light-induced hydrogenation of nitro compounds to amines, dehydrogenation of alcohols to aldehydes, condensation between the in situ formed aldehydes and amines to imines and the hydrogenation of final imines to generate the desired secondary amines were realized in one pot over Pd/NiTi-LDH under visible light. This work shows an effective and green strategy in the synthesis of secondary amines. This study also demonstrates the high potential of using metal/LDH nanocomposites for light-initiated organic syntheses.
Collapse
Affiliation(s)
- Jiaqi Wang
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China.
| | - Jiaqi Jiang
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China.
| | - Zhaohui Li
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China.
| |
Collapse
|
6
|
Liu H, Deng Z, Wang B, Ding Z, Li Z. Efficient visible light-initiated hydrogenation of nitrobenzene for chemoselective production of aniline, azoxybenzene, azobenzene and hydrazobenzene over CQDs/CdS nanocomposites. Dalton Trans 2023; 52:13129-13136. [PMID: 37655690 DOI: 10.1039/d3dt02163g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Carbon quantum dot (CQD)-decorated CdS nanocomposites were successfully fabricated via the self-assembly of CdS in the presence of preformed CQDs and were found to be efficient photocatalysts for the hydrogenation of nitrobenzene under visible light. Due to the presence of the frustrated Lewis acid-base pairs (FLPs) in their structure, CQDs act as an efficient catalyst to promote the proton-coupled hydrogenation of nitrobenzene over CQDs/CdS nanocomposites. Controllable and chemoselective hydrogenation of nitrobenzene to produce aniline, azoxybenzene, azobenzene and hydrazobenzene can be realized over CQDs/CdS via simply regulating the reaction medium including the hydrogen source, the solvent and the alkalinity. This study provides a highly efficient and economical photocatalytic system for the controllable and chemoselective hydrogenation of nitrobenzene under visible light. This work also highlights the great potential of semiconductor-based photocatalysis in light-initiated organic syntheses.
Collapse
Affiliation(s)
- Hurunqing Liu
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China.
| | - Zirong Deng
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China.
| | - Bingqing Wang
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China.
| | - Zhengxin Ding
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China.
| | - Zhaohui Li
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China.
| |
Collapse
|
7
|
Zhao MY, Tang YF, Han GZ. Recent Advances in the Synthesis of Aromatic Azo Compounds. Molecules 2023; 28:6741. [PMID: 37764517 PMCID: PMC10538219 DOI: 10.3390/molecules28186741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Aromatic azo compounds have -N=N- double bonds as well as a larger π electron conjugation system, which endows aromatic azo compounds with wide applications in the fields of functional materials. The properties of aromatic azo compounds are closely related to the substituents on their aromatic rings. However, traditional synthesis methods, such as the coupling of diazo salts, have a significant limitation with respect to the structural design of aromatic azo compounds. Therefore, many scientists have devoted their efforts to developing new synthetic methods. Moreover, recent advances in the synthesis of aromatic azo compounds have led to improvements in the design and preparation of light-response materials at the molecular level. This review summarizes the important synthetic progress of aromatic azo compounds in recent years, with an emphasis on the pioneering contribution of functional nanomaterials to the field.
Collapse
Affiliation(s)
| | | | - Guo-Zhi Han
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China; (M.-Y.Z.); (Y.-F.T.)
| |
Collapse
|
8
|
Luján AP, Bhat MF, Tsaturyan S, van Merkerk R, Fu H, Poelarends GJ. Tailored photoenzymatic systems for selective reduction of aliphatic and aromatic nitro compounds fueled by light. Nat Commun 2023; 14:5442. [PMID: 37673927 PMCID: PMC10482925 DOI: 10.1038/s41467-023-41194-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023] Open
Abstract
The selective enzymatic reduction of nitroaliphatic and nitroaromatic compounds to aliphatic amines and amino-, azoxy- and azo-aromatics, respectively, remains a persisting challenge for biocatalysis. Here we demonstrate the light-powered, selective photoenzymatic synthesis of aliphatic amines and amino-, azoxy- and azo-aromatics from the corresponding nitro compounds. The nitroreductase from Bacillus amyloliquefaciens, in synergy with a photocatalytic system based on chlorophyll, promotes selective conversions of electronically-diverse nitroarenes into a series of aromatic amino, azoxy and azo products with excellent yield (up to 97%). The exploitation of an alternative nitroreductase from Enterobacter cloacae enables the tailoring of a photoenzymatic system for the challenging synthesis of aliphatic amines from nitroalkenes and nitroalkanes (up to 90% yield). This photoenzymatic reduction overcomes the competing bio-Nef reaction, typically hindering the complete enzymatic reduction of nitroaliphatics. The results highlight the usefulness of nitroreductases to create selective photoenzymatic systems for the synthesis of precious chemicals, and the effectiveness of chlorophyll as an innocuous photocatalyst, enabling the use of sunlight to drive the photobiocatalytic reactions.
Collapse
Affiliation(s)
- Alejandro Prats Luján
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Mohammad Faizan Bhat
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Sona Tsaturyan
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Ronald van Merkerk
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Haigen Fu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14850, USA
| | - Gerrit J Poelarends
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
| |
Collapse
|
9
|
Deng C, Xie S, Li Y, Zhao Y, Zhou P, Sheng H, Ji H, Chen C, Zhao J. Strong Spin Polarization Effect of Atomically Dispersed Metal Site Boosts the Selective Photocatalytic Nitrobenzene Hydrogenation to Aniline over Graphitic Carbon Nitride. J Phys Chem A 2023; 127:2787-2794. [PMID: 36924022 DOI: 10.1021/acs.jpca.3c00634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Atomically dispersed catalysts (ADCs) with a well-defined structure are theoretically desirable for a high-selectivity photocatalytic reaction. However, achieving high product selectivity remains a practical challenge for ADCs-based photocatalysts. Herein, we reveal a spin polarization effect on achieving high product selectivity (95.0%) toward the photocatalytic nitrobenzene (PhNO2) hydrogenation to aniline (PhNH2) on atomically dispersed Fe site-loaded graphitic carbon nitride (Fe/g-C3N4). In combination with the Gibbs free energy diagram and electronic structure analysis, the origin of the photocatalytic performance is attributed not only to the strong metal-support interaction between the Fe site and g-C3N4, but more importantly to the strong spin polarization effect that promotes the potential-determining step (PDS) of *PhNO to *PhNOH. This work could be helpful for the design of ADCs-based photocatalysts in view of the spin polarization effect.
Collapse
Affiliation(s)
- Chaoyuan Deng
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shijie Xie
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Youji Li
- College of Chemistry and Chemical Engineering, Jishou University, Jishou, Hunan 416000, P. R. China
| | - Yukun Zhao
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Peng Zhou
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hua Sheng
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hongwei Ji
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chuncheng Chen
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jincai Zhao
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
10
|
Gong W, Mao X, Zhang J, Lin Y, Zhang H, Du A, Xiong Y, Zhao H. Ni-Co Alloy Nanoparticles Catalyze Selective Electrochemical Coupling of Nitroarenes into Azoxybenzene Compounds in Aqueous Electrolyte. ACS NANO 2023; 17:3984-3995. [PMID: 36786231 DOI: 10.1021/acsnano.2c12839] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In theory, electrocatalysts in their metallic forms should be the most stable chemical state under cathodic potentials. It is known that the highly dispersed nanoparticle (NP) types of electrocatalysts often possess higher activity than their bulk counterparts. However, facilely and controllably fabricating well-dispersed nonprecious metal NPs with superior electrocatalytic activity, selectivity, and durability is highly challenging. Here, we report a facile reductive pyrolysis approach to controllably synthesize NiCo alloy NPs confined on the tip of N-doped carbon nanotubes (N-CNTs) from a bimetal-MOF precursor. The electrocatalytic performance of the resultant NiCo@N-CNTs are evaluated by a wide spectrum of nitroarene reductive coupling reactions to produce azoxy-benzenes, a class of precious chemicals for textile, food, cosmetic, and pharmaceutical industries. The superior electrocatalytic stability, full conversion of nitroarenes, >99% selectivities, and >97% faradic efficiencies toward the targeted azoxy-benzene products are readily attainable by NiCo@N-CNTs, attributable to the alloying-induced synergetic effect. The presence of a CNT confinement effect in NiCo@N-CNTs induces high stability. This added to the metallic states of NiCo empowers NiCo@N-CNTs with excellent electrochemical stability under reductive reaction conditions. In an effort to enhance the energy utilization efficiency, we construct a NiCo@N-CNTs||Ni(OH)2/NF two-electrode electrolyzer to simultaneously reduce nitrobenzene at the cathode and 5-hydroxymethylfurfural with >99% yields for both azoxy-benzene and 2,5-furandicarboxylic acid.
Collapse
Affiliation(s)
- Wanbing Gong
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P.R. China
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Xin Mao
- School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, Gardens Point Campus, Brisbane, Queensland 4001, Australia
| | - Jifang Zhang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P.R. China
| | - Yue Lin
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Haimin Zhang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P.R. China
| | - Aijun Du
- School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, Gardens Point Campus, Brisbane, Queensland 4001, Australia
| | - Yujie Xiong
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Huijun Zhao
- Centre for Catalysis and Clean Energy, Gold Coast Campus, Griffith University, Gold Coast, Queensland 4222, Australia
| |
Collapse
|
11
|
Xiong J, Li H, Zhou J, Di J. Recent progress of indium-based photocatalysts: Classification, regulation and diversified applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Chen M, Wang C, Wang L, Xu J. Encapsulation carbon QDs in In-MIL-68 to derive carbon QDs@In2S3 tube for photoreduction of Cr(VI). J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Xu J, Yan C, Wu Z, Xu M, Wei T, He T, Zhou W, Zhang Y, Zhang J, Yang B. Synergistic reduction and oxidation system using 4,7-dihydroxycoumarin as a green photocatalyst for efficient nitrobenzene degradation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
14
|
Phasayavan W, Boochakiat S, Pluengphon P, Tantraviwat D, Inceesungvorn B. Tuning product selectivity in nitrobenzene reduction over a single Bi2MoO6 photocatalyst in one pot: Mechanisms and roles of reaction compositions. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Au Nanoparticles Loaded Bi5Ti3FeO15 Ferroelectric Nanosheets with Enhanced Photocatalytic Activity for NO Removal. Catal Letters 2022. [DOI: 10.1007/s10562-022-04115-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Kaushik B, Rana P, Solanki K, Rawat D, Yadav S, Rana P, Naikwadi DR, Biradar AV, Sharma R. In-situ Synthesis of 3-D Hierarchical ZnFe2O4 modified Cu2S snowflakes: Exploring their bifunctionality in Selective Photocatalytic Reduction of Nitroarenes and Methyl Orange Degradation. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
17
|
Si C, Liu F, Yan X, Xu J, Niu G, Han Q. Designing a Polyoxometalate-Incorporated Metal-Organic Framework for Reduction of Nitroarenes to Anilines by Sequential Proton-Coupled Electron Transfers. Inorg Chem 2022; 61:5335-5342. [PMID: 35290043 DOI: 10.1021/acs.inorgchem.2c00106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Developing new photocatalysts for reduction of nitroarenes to anilines under mild conditions is very significant. Herein, a new polyoxometalate-based metal-organic framework (POMOF), {[Co(H2O)]2[Co2(H2O)6(TPT)][Co(TPT)PW11O39]}·3H2O·TPT (namely, CoW-TPT, TPT = 2,4,6-tri(4-pyridyl)-1,3,5-triazine), was prepared by incorporating Co(II)-substituted Keggin-type anions [PCoW11O39]5- and a photosensitizer (TPT) into a framework. In this structure, the direct coordination bond between [PCoW11O39]5- and TPT ligand and π···π interactions between TPT molecules are beneficial for the separation and migration of photogenerated carriers, thus improving the photocatalytic activity of CoW-TPT. The combination of both photosensitizer TPT and the electron-storable component [PCoW11O39]5- in a cooperative photocatalysis fashion is conducive to the photocatalytic multielectron reduction of nitroarenes. CoW-TPT provided a high conversion of 94.71% in the photocatalytic reduction of nitroarenes to anilines utilizing triethanolamine as the proton source and electron donor by sequential proton-coupled electron transfers.
Collapse
Affiliation(s)
- Chen Si
- Henan Key Laboratory of Polyoxometalate Chemistry, School of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Fan Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, School of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Xiaomei Yan
- Henan Key Laboratory of Polyoxometalate Chemistry, School of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Jiangbo Xu
- Henan Key Laboratory of Polyoxometalate Chemistry, School of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Guiqin Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, School of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Qiuxia Han
- Henan Key Laboratory of Polyoxometalate Chemistry, School of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China
| |
Collapse
|
18
|
Ghosh A, Limaye AS, K. N. M, Patil SA, Dateer RB. Zn-Mediated Selective Reduction of Nitroarenes: A Sustainable Approach for Azoxybenzenes Synthesis. ORG PREP PROCED INT 2022. [DOI: 10.1080/00304948.2021.2022441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Arnab Ghosh
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bangalore, Karnataka, India
| | - Akshay S. Limaye
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bangalore, Karnataka, India
| | - Manjunatha K. N.
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bangalore, Karnataka, India
| | - Siddappa A. Patil
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bangalore, Karnataka, India
| | - Ramesh B. Dateer
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bangalore, Karnataka, India
| |
Collapse
|
19
|
Yang R, Mei L, Fan Y, Zhang Q, Zhu R, Amal R, Yin Z, Zeng Z. ZnIn 2 S 4 -Based Photocatalysts for Energy and Environmental Applications. SMALL METHODS 2021; 5:e2100887. [PMID: 34927932 DOI: 10.1002/smtd.202100887] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Indexed: 06/14/2023]
Abstract
As a fascinating visible-light-responsive photocatalyst, zinc indium sulfide (ZnIn2 S4 ) has attracted extensive interdisciplinary interest and is expected to become a new research hotspot in the near future, due to its nontoxicity, suitable band gap, high physicochemical stability and durability, ease of synthesis, and appealing catalytic activity. This review provides an overview on the recent advances in ZnIn2 S4 -based photocatalysts. First, the crystal structures and band structures of ZnIn2 S4 are briefly introduced. Then, various modulation strategies of ZnIn2 S4 are outlined for better photocatalytic performance, which includes morphology and structure engineering, vacancy engineering, doping engineering, hydrogenation engineering, and the construction of ZnIn2 S4 -based composites. Thereafter, the potential applications in the energy and environmental area of ZnIn2 S4 -based photocatalysts are summarized. Finally, some personal perspectives about the promises and prospects of this emerging material are provided.
Collapse
Affiliation(s)
- Ruijie Yang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
| | - Liang Mei
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
| | - Yingying Fan
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
| | - Qingyong Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
| | - Rongshu Zhu
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, P. R. China
| | - Rose Amal
- Particles and Catalysis Research Group, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Zongyou Yin
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, 2601, Australia
| | - Zhiyuan Zeng
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
| |
Collapse
|
20
|
An H, Xiao S, Zhao X, Cao L, Liu T, Li M, Wang B, Yin Z. Construction of Highly Efficient Photocatalyst with
Core‐Shell
Au@Ag/C@
SiO
2
Hybrid Structure towards
Visible‐Light‐Driven
Photocatalytic Reduction. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Huiqin An
- State Key Laboratory of Separation Membranes and Membrane Processes & School of Chemistry and Chemical Engineering Tiangong University Tianjin 300387 China
| | - Shunyuan Xiao
- State Key Laboratory of Separation Membranes and Membrane Processes & School of Chemistry and Chemical Engineering Tiangong University Tianjin 300387 China
| | - Xiaohui Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes & School of Chemistry and Chemical Engineering Tiangong University Tianjin 300387 China
| | - Lifang Cao
- State Key Laboratory of Separation Membranes and Membrane Processes & School of Chemistry and Chemical Engineering Tiangong University Tianjin 300387 China
| | - Ting Liu
- Second Oil Production Plant in Changqing Oilfield Qingyang Gansu 745106 China
| | - Mengzhu Li
- Beijing Institute of Aerospace Testing Technology Beijing 100048 China
| | - Bing Wang
- State Key Laboratory of Separation Membranes and Membrane Processes & School of Chemistry and Chemical Engineering Tiangong University Tianjin 300387 China
| | - Zhen Yin
- College of Chemical Engineering and Materials Science Tianjin University of Science and Technology Tianjin 300457 China
| |
Collapse
|
21
|
Selective Reductive Transformations of Organic Nitro Compounds in Heterogeneous Photocatalytic Systems: A Review. THEOR EXP CHEM+ 2021. [DOI: 10.1007/s11237-021-09673-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Firoozi S, Hosseini-Sarvari M. Nanosized CdS as a Reusable Photocatalyst: The Study of Different Reaction Pathways between Tertiary Amines and Aryl Sulfonyl Chlorides through Visible-Light-Induced N-Dealkylation and C-H Activation Processes. J Org Chem 2021; 86:2117-2134. [PMID: 33464894 DOI: 10.1021/acs.joc.0c02263] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
It has been found that the final products of the reaction of sulfonyl chlorides and tertiary amines in the presence of cadmium sulfide nanoparticles under visible light irradiation are highly dependent on the applied reaction conditions. Interestingly, with the change of a reaction condition, different pathways were conducted (visible-light-induced N-dealkylation or sp3 and sp2 C-H activation) that lead to different products such as secondary amines and various sulfonyl compounds. Remarkably, all of these reactions were performed under visible light irradiation and an air atmosphere without any additive or oxidant in benign solvents or under solvent-free conditions. During this study, the CdS nanoparticles as affordable, heterogeneous, and recyclable photocatalysts were designed, successfully synthesized, and fully characterized and applied for these protocols. During these studies, intermediates resulting from the oxidation of tertiary amines are trapped during the photoinduced electron transfer (PET) process. The reaction was carried out efficiently with a variety of substrates to give the corresponding products at relatively short times in good to excellent yields in parallel with the use of the visible light irradiation as a renewable energy source. Most of these processes are novel or are superior in terms of cost-effectiveness, safety, and simplicity to published reports.
Collapse
Affiliation(s)
- Somayeh Firoozi
- Department of Chemistry, Shiraz University, Shiraz 7194684795, Islamic Republic of Iran
| | - Mona Hosseini-Sarvari
- Department of Chemistry, Shiraz University, Shiraz 7194684795, Islamic Republic of Iran
| |
Collapse
|
23
|
Wang X, Li Y, Li Z. Thiol-initiated photocatalytic oxidative cleavage of the CC bond in olefins and its extension to direct production of acetals from olefins. Catal Sci Technol 2021. [DOI: 10.1039/d0cy01963a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Oxidative cleavage of a broad scope of olefins is realized over ZnIn2S4 under visible light, using air as oxidant and thiol as initiator. Coupled with the condensation between aldehydes/ketones and alcohols, this strategy can be used to yield acetals directly from olefins.
Collapse
Affiliation(s)
- Xinglin Wang
- Research Institute of Photocatalysis
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
- Fuzhou 350116
| | - Yuanyuan Li
- Research Institute of Photocatalysis
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
- Fuzhou 350116
| | - Zhaohui Li
- Research Institute of Photocatalysis
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
- Fuzhou 350116
| |
Collapse
|
24
|
Visible-Light Photocatalysts and Their Perspectives for Building Photocatalytic Membrane Reactors for Various Liquid Phase Chemical Conversions. Catalysts 2020. [DOI: 10.3390/catal10111334] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Photocatalytic organic synthesis/conversions and water treatment under visible light are a challenging task to use renewable energy in chemical transformations. In this review a brief overview on the mainly employed visible light photocatalysts and a discussion on the problems and advantages of Vis-light versus UV-light irradiation is reported. Visible light photocatalysts in the photocatalytic conversion of CO2, conversion of acetophenone to phenylethanol, hydrogenation of nitro compounds, oxidation of cyclohexane, synthesis of vanillin and phenol, as well as hydrogen production and water treatment are discussed. Some applications of these photocatalysts in photocatalytic membrane reactors (PMRs) for carrying out organic synthesis, conversion and/or degradation of organic pollutants are reported. The described cases show that PMRs represent a promising green technology that could shift on applications of industrial interest using visible light (from Sun) active photocatalysts.
Collapse
|