1
|
Ge S, Gong L, Yi P, Mo X, Liu C, Yi XY, He P. N-Site Regulation of Pyridyltriazole in Cp*Ir(N̂N)(H 2O) Complexes Achieving Catalytic FA Dehydrogenation. Inorg Chem 2023; 62:18375-18383. [PMID: 37910633 DOI: 10.1021/acs.inorgchem.3c01649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
A series of novel Cp*Ir complexes with nitrogen-rich N̂N bidentate ligands were developed for the catalytic dehydrogenation of formic acid in water under base-free conditions. These complexes were synthesized by using pyridyl 1,2,4-triazole, methylated species, or pyridyl 1,2,3-triazole as a N-site regulation ligand and were fully characterized. Complex 1-H2O bearing 1,2,4-triazole achieved a high turnover frequency of 14192 h-1 at 90 °C in 4 M FA aqueous solution. The terminal and bridged Ir-H intermediates of 1-H2O were successfully detected by 1H NMR and mass spectrometry measurements. Kinetic isotope effect experiments and density functional theory (DFT) calculations were performed; then a plausible mechanism was proposed involving the β-hydride elimination and formation of H2. Water-assisted H2 release was proven to be the rate-determining step of the reaction. The distribution of Mulliken charges on N atoms of triazole ligand internally revealed that the ortho site N2 of 1-H2O with a higher electron density was conducive to efficient proton transfer. Additionally, the advantage of water-assisted short-range bridge of 1,2,4-triazole moieties led to a higher catalytic activity of 1-H2O. This study demonstrated the effectiveness of nitrogen-rich ligands on FA dehydrogenation and revealed a good strategy for N site regulation in the development of new homogeneous catalysts.
Collapse
Affiliation(s)
- Shun Ge
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Lishan Gong
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Pingping Yi
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Xiufang Mo
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Chao Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Xiao-Yi Yi
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Piao He
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| |
Collapse
|
2
|
Bhandari S, Rangarajan S, Li S, Scaranto J, Singh S, Maravelias CT, Dumesic JA, Mavrikakis M. A Coverage Self-Consistent Microkinetic Model for Vapor-Phase Formic Acid Decomposition over Pd/C Catalysts. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Affiliation(s)
- Saurabh Bhandari
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison 53706, Wisconsin, United States
| | - Srinivas Rangarajan
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison 53706, Wisconsin, United States
| | - Sha Li
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison 53706, Wisconsin, United States
| | - Jessica Scaranto
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison 53706, Wisconsin, United States
| | - Suyash Singh
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison 53706, Wisconsin, United States
| | - Christos T. Maravelias
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison 53706, Wisconsin, United States
| | - James A. Dumesic
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison 53706, Wisconsin, United States
| | - Manos Mavrikakis
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison 53706, Wisconsin, United States
| |
Collapse
|
3
|
Zhang Q, Jiang B, Wang B, He N, Liu K, Tang D, Li L. Superaerophobic Resin-Grafted rGO Aerogel with Boosted Product Removal Delivering High-Performance Hydrogen Release at Ultrahigh Storage Density. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204647. [PMID: 36310141 DOI: 10.1002/smll.202204647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Liquid hydrogen carriers featuring high hydrogen content, safety, and hydrogen release on demand have motivated great endeavors for sustainable hydrogen supply. Nonetheless, direct hydrogen release is limited by the ultralow hydrogen evolution rate, while the conventional manner of extra additive and solvent addition for promoting rates greatly deteriorates its hydrogen storage density. Thus, it is still challenging to simultaneously satisfy high-performance hydrogen release and high storage density. Herein, an aerophobicity surface-based gas-liquid interface reaction strategy is proposed, which renders rapid product removal to promote dehydrogenation, fundamentally circumventing the employment of additives and solvents. Accordingly, a hierarchically porous resin-grafted reduced graphene oxide aerogel is designed. It imparts superaerophobic surface to facilitate product detachment from reactive sites, and the structure-oriented interface reaction design provides product diffusion channels and reduced diffusion resistance. As a result, the aerogel harvests a record hydrogen evolution rate (347 mmol g-1 h-1 ) in an ultrahigh-density formic acid of 19.8 g L-1 , around two times the rate promotion and ten times the density improvement compared to the state-of-the-art materials and systems. The strategy presents an approach for the dehydrogenation of liquid hydrogen carriers, e.g., formic acid, formaldehyde, and hydrazine hydrate, concurrently ensuring high-performance hydrogen release and high hydrogen storage density.
Collapse
Affiliation(s)
- Qian Zhang
- School of Energy and Power Engineering, Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian, 116024, China
| | - Bo Jiang
- School of Energy and Power Engineering, Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian, 116024, China
| | - Bingsen Wang
- School of Energy and Power Engineering, Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian, 116024, China
| | - Nan He
- School of Energy and Power Engineering, Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian, 116024, China
| | - Kun Liu
- School of Energy and Power Engineering, Key Laboratory of Thermo-fluid Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Dawei Tang
- School of Energy and Power Engineering, Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian, 116024, China
| | - Lin Li
- School of Energy and Power Engineering, Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
4
|
Issa Hamoud H, Damacet P, Fan D, Assaad N, Lebedev OI, Krystianiak A, Gouda A, Heintz O, Daturi M, Maurin G, Hmadeh M, El-Roz M. Selective Photocatalytic Dehydrogenation of Formic Acid by an In Situ-Restructured Copper-Postmetalated Metal-Organic Framework under Visible Light. J Am Chem Soc 2022; 144:16433-16446. [PMID: 36047929 PMCID: PMC9479070 DOI: 10.1021/jacs.2c04905] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Formic acid is considered as one of the most promising
liquid organic
hydrogen carriers. Its catalytic dehydrogenation process generally
suffers from low activity, low reaction selectivity, low stability
of the catalysts, and/or the use of noble-metal-based catalysts. Herein
we report a highly selective, efficient, and noble-metal-free photocatalyst
for the dehydrogenation of formic acid. This catalyst, UiO-66(COOH)2-Cu, is built by postmetalation of a carboxylic-functionalized
Zr-MOF with copper. The visible-light-driven photocatalytic dehydrogenation
process through the release of hydrogen and carbon dioxide has been
monitored in real-time viaoperando Fourier transform infrared spectroscopy, which revealed almost 100%
selectivity with high stability (over 3 days) and a conversion yield
exceeding 60% (around 5 mmol·gcat–1·h–1) under ambient conditions. These performance
indicators make UiO-66(COOH)2-Cu among the top photocatalysts
for formic acid dehydrogenation. Interestingly, the as-prepared UiO-66(COOH)2-Cu hetero-nanostructure was found to be moderately active
under solar irradiation during an induction phase, whereupon it undergoes
an in-situ restructuring process through intraframework
cross-linking with the formation of the anhydride analogue structure
UiO-66(COO)2-Cu and nanoclustering of highly active and
stable copper sites, as evidenced by the operando studies coupled with steady-state isotopic transient kinetic experiments,
transmission electron microscopy and X-ray photoelectron spectroscopy
analyses, and Density Functional Theory calculations. Beyond revealing
outstanding catalytic performance for UiO-66(COO)2-Cu,
this work delivers an in-depth understanding of the photocatalytic
reaction mechanism, which involves evolutive behavior of the postmetalated
copper as well as the MOF framework over the reaction. These key findings
pave the way toward the engineering of new and efficient catalysts
for photocatalytic dehydrogenation of formic acid.
Collapse
Affiliation(s)
- Houeida Issa Hamoud
- Normandie Univ, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie, 14050 Caen, France
| | - Patrick Damacet
- Department of Chemistry, American University of Beirut, P.O. Box 11-0236, Riad El-Solh, Beirut 1107 2020, Lebanon
| | - Dong Fan
- Institut Charles Gerhardt Montpellier (ICGM), University of Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Nisrine Assaad
- Department of Chemistry, American University of Beirut, P.O. Box 11-0236, Riad El-Solh, Beirut 1107 2020, Lebanon
| | - Oleg I Lebedev
- Normandie Univ, ENSICAEN, UNICAEN, CNRS, Laboratoire CRISMAT, UMR 6508, 14050 Caen, France
| | - Anna Krystianiak
- ICB, CNRS UMR 6303 - Université de Bourgogne Franche-Comté, 9 Avenue A. Savary, 21078 Dijon, France
| | - Abdelaziz Gouda
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Olivier Heintz
- ICB, CNRS UMR 6303 - Université de Bourgogne Franche-Comté, 9 Avenue A. Savary, 21078 Dijon, France
| | - Marco Daturi
- Normandie Univ, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie, 14050 Caen, France
| | - Guillaume Maurin
- Institut Charles Gerhardt Montpellier (ICGM), University of Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Mohamad Hmadeh
- Department of Chemistry, American University of Beirut, P.O. Box 11-0236, Riad El-Solh, Beirut 1107 2020, Lebanon
| | - Mohamad El-Roz
- Normandie Univ, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie, 14050 Caen, France
| |
Collapse
|
5
|
In situ hydrogenation of phenol using sodium formate in an aqueous medium on unmodified palladium catalysts supported on KIT-5: Investigation of calcination temperature effect. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Hafeez S, Al-Salem SM, Bansode A, Villa A, Dimitratos N, Manos G, Constantinou A. Computational Investigation of Microreactor Configurations for Hydrogen Production from Formic Acid Decomposition Using a Pd/C Catalyst. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sanaa Hafeez
- Department of Chemical Engineering, University College London, London WCIE 7JE, UK
| | - Sultan M. Al-Salem
- Environment & Life Sciences Research Centre, Kuwait Institute for Scientific Research, P.O. Box: 24885, Safat 13109, Kuwait
| | - Atul Bansode
- Catalysis Engineering, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, Netherlands
| | - Alberto Villa
- Dipartimento di Chimica, Universitá degli Studi di Milano, via Golgi, 20133 Milan, Italy
| | - Nikolaos Dimitratos
- Dipartimento di Chimica Industriale e dei Materiali, ALMA MATER STUDIORUM Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - George Manos
- Department of Chemical Engineering, University College London, London WCIE 7JE, UK
| | - Achilleas Constantinou
- Department of Chemical Engineering, Cyprus University of Technology, 57 Corner of Athinon and Anexartisias, 3036 Limassol, Cyprus
| |
Collapse
|
7
|
Xu P, Agarwal S, Lefferts L. Formic acid generating in-situ H2 and CO2 for nitrite reduction in aqueous phase. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01448j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aim of this work is to explore and to understand the effect of pH, concentrations and presence of oxygen traces on reduction nitrite in drinking water with Pd/γ-Al2O3, using...
Collapse
|
8
|
Kim Y, Lee H, Yang S, Lee J, Kim H, Hwang S, Jeon SW, Kim DH. Ultrafine Pd nanoparticles on amine-functionalized carbon nanotubes for hydrogen production from formic acid. J Catal 2021. [DOI: 10.1016/j.jcat.2021.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|