1
|
Ding X, Duan J, Jia M, Fan H, Lyu Y, Fu J, Liu X. Advanced Zeolite-Based Catalysts for CO 2 Hydrogenation to Targeted High-Value Chemicals and Fuels. Chem Asian J 2025; 20:e202401703. [PMID: 39888332 DOI: 10.1002/asia.202401703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/23/2025] [Accepted: 01/30/2025] [Indexed: 02/01/2025]
Abstract
The excessive use of fossil fuels has resulted in elevated CO2 emissions in the atmosphere, significantly impacting the climate and global environment. The catalytic conversion of CO2 into high-value chemicals has been recognized as a promising strategy to mitigate CO2 emissions. Light olefins, aromatics, and alcohols, etc. are widely used high-value chemicals as fuels and chemical synthesis intermediates. To enhance the catalytic efficiency and selectivity for producing these chemicals, various catalysts have been developed. Among them, zeolite-based catalysts have garnered significant attention due to their unique microporous structure, shape-selective catalysis capability, high thermal stability, and tunable acidity. This article focuses on the distinctive structural characteristics of zeolites and their notable representative applications, with particular emphasis on the impact of zeolite structural properties on catalytic performance and reaction mechanism. Additionally, we discuss the current challenges of fabricating highly efficient zeolite-based catalysts and future development prospects in improving the catalytic performance and industrial-scale applications. We propose rational and strategic insights to pave the way for the efficient utilization of CO₂ as a valuable resource.
Collapse
Affiliation(s)
- Xuechun Ding
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, 266580, China
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao, 266580, China
| | - Jiayi Duan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, 266580, China
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao, 266580, China
| | - Meijie Jia
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, 266580, China
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao, 266580, China
| | - Haihan Fan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, 266580, China
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao, 266580, China
| | - Yuchao Lyu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, 266580, China
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao, 266580, China
| | - Jianye Fu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, 266580, China
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao, 266580, China
| | - Xinmei Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, 266580, China
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao, 266580, China
| |
Collapse
|
2
|
Kang X, Liu J, Wang D, Tian C, Fu H. Tandem Pt/TiO 2 and Fe 3C catalysts for direct transformation of CO 2 to light hydrocarbons under high space velocity. J Colloid Interface Sci 2025; 678:1165-1175. [PMID: 39284271 DOI: 10.1016/j.jcis.2024.09.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/24/2024] [Accepted: 09/04/2024] [Indexed: 10/26/2024]
Abstract
CO2 hydrogenation to hydrocarbons under high space velocity is crucial for industrial applications, but traditional Fe-based catalysts often suffer from the low activity and poor stability. Herein, we report a new tandem catalyst system combining Pt/TiO2 catalysts with Fe3C catalysts for the direct conversion of CO2 into C2-C4 hydrocarbons under high space velocity. The Pt/TiO2 component promotes *CO intermediate production with an enhanced Reverse Water-Gas Shift (RWGS) reaction efficiency, providing a highly reactive species for the Fe3C catalyst to achieve Fischer-Tropsch synthesis (FTS). By maximizing the contact interface between the Pt/TiO2 and Fe-based components through a granule mixing configuration, we achieve significant enhancements in both CO2 conversion rate (24.0 %) and C2-C4 hydrocarbons selectivity (51.1 %) under the gaseous hourly space velocity (GHSV) of 100000 mL gcat-1h-1. Besides, excellent stability is achieved by the tandem catalysts with continuous catalysis for up to 80 h without significant decrease in activity. Through modulation of the reduction states of iron oxide, we effectively tune the composition of Fe-based catalyst, thereby tailoring the product distribution. Through this work, we not only offer a promising avenue for reducing CO2 for efficient CO2 utilization but also highlight the importance of catalyst design in advancing sustainable chemical synthesis.
Collapse
Affiliation(s)
- Xin Kang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University. Harbin 150080, China
| | - Jiancong Liu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University. Harbin 150080, China.
| | - Dongxu Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University. Harbin 150080, China
| | - Chungui Tian
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University. Harbin 150080, China
| | - Honggang Fu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University. Harbin 150080, China.
| |
Collapse
|
3
|
Ramos-Fernandez EV, Santos JL, Alsaadi DK, Bavykina A, Gallo JMR, Gascon J. Potential pathways for CO 2 utilization in sustainable aviation fuel synthesis. Chem Sci 2025; 16:530-551. [PMID: 39650214 PMCID: PMC11618589 DOI: 10.1039/d4sc06164k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/13/2024] [Indexed: 12/11/2024] Open
Abstract
The development of sustainable aviation fuels (SAFs) is a must for the decarbonization of the aviation industry. This paper explores various pathways for SAF production, focusing on innovative catalytic processes for the utilization of CO2 as a potential feedstock. Key pathways analyzed include the Modified Fischer-Tropsch Synthesis (MFTS), methanol synthesis, and subsequent transformations of methanol into hydrocarbons (MTH), aromatics (MTA) and olefin oligomerization. The potential of these processes is highlighted, alongside the challenges in catalyst development. The paper emphasizes the need for advanced catalytic processes to achieve high selectivity and stability under industrial conditions, which are critical for the commercial viability of CO2-based SAF production. Ultimately, this work aims to provide a comprehensive overview of the current state of research in SAFs, outlining promising directions for future research.
Collapse
Affiliation(s)
- Enrique V Ramos-Fernandez
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST) Thuwal 23955 Saudi Arabia
- Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica, Instituto Universitario de Materiales de Alicante, Universidad de Alicante Apartado 99 Alicante E-03080 Spain
| | - Jose L Santos
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST) Thuwal 23955 Saudi Arabia
| | - Dina K Alsaadi
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST) Thuwal 23955 Saudi Arabia
| | - Anastasiya Bavykina
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST) Thuwal 23955 Saudi Arabia
| | - Jean Marcel R Gallo
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST) Thuwal 23955 Saudi Arabia
| | - Jorge Gascon
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST) Thuwal 23955 Saudi Arabia
| |
Collapse
|
4
|
Ma Q, Cheng J, Wu X, Xie J, Zhang R, Mao Z, Yang H, Fan W, Zeng J, Bitter JH, Li G, Li Z, Li C. C-C bond coupling with sp 3 C-H bond via active intermediates from CO 2 hydrogenation. Nat Commun 2025; 16:140. [PMID: 39747077 PMCID: PMC11697012 DOI: 10.1038/s41467-024-55640-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025] Open
Abstract
Compared to the sluggish kinetics observed in methanol-mediated side-chain alkylation of methyl groups with sp3 C-H bonds, CO2 hydrogenation emerges as a sustainable alternative strategy, yet it remains a challenge. Here, as far as we know, it is first reported that using CO2 hydrogenation replacing methanol can conduct the side-chain alkylation of 4-methylpyridine (MEPY) over a binary metal oxide-zeolite Zn40Zr60O/CsX tandem catalyst (ZZO/CsX). This ZZO/CsX catalyst can achieve 19.6% MEPY single-pass conversion and 82% 4-ethylpyridine (ETPY) selectivity by using CO2 hydrogenation, which is 6.5 times more active than methanol as an alkylation agent. The excellent catalytic performance is realized on the basis of the dual functions of the tandem catalyst: hydrogenation of CO2 on the ZZO and activation of sp3 C-H bond and C-C bond coupling on the CsX zeolite. The thermodynamic and kinetic coupling between the tandem reactions enables the highly efficient CO2 hydrogenation and C-C bond coupling. In-situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and density functional theory (DFT) calculations suggest that the CHxO* (CH2O*) species, rather than methanol produced from CO2 hydrogenation, is the key intermediate to achieve the C-C bond coupling.
Collapse
Affiliation(s)
- Qianli Ma
- Key Laboratory of advanced catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
| | - Jianian Cheng
- Key Laboratory of advanced catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
| | - Xiaojing Wu
- Key Laboratory of advanced catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
| | - Jin Xie
- Key Laboratory of advanced catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
| | - Ruihui Zhang
- Key Laboratory of advanced catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
| | - Zhihe Mao
- Key Laboratory of advanced catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
| | - Hongfang Yang
- Key Laboratory of advanced catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
| | - Wenjun Fan
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Jianrong Zeng
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201204, Shanghai, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 201800, Shanghai, China
| | - Johannes Hendrik Bitter
- Biobased chemistry and technology group, Wageningen University, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Guanna Li
- Biobased chemistry and technology group, Wageningen University, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands.
| | - Zelong Li
- Key Laboratory of advanced catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China.
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China.
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000, Lanzhou, China.
| | - Can Li
- Key Laboratory of advanced catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China.
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China.
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China.
| |
Collapse
|
5
|
Bogdan TV, Koklin AE, Mishanin II, Chernavskii PA, Pankratov DA, Kim OA, Bogdan VI. CO 2 Hydrogenation on Carbides Formed in situ on Carbon-Supported Iron-Based Catalysts in High-Density Supercritical Medium. Chempluschem 2024; 89:e202400327. [PMID: 39012805 DOI: 10.1002/cplu.202400327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 07/18/2024]
Abstract
CO2 conversion via hydrogenation over iron-based catalysts on non-carbon supports produces mainly CO or methane by the Sabatier reaction, while the formation of C2+ hydrocarbons is of greatest interest. CxHy production from CO2 may be considered as a two-step process with the initial formation of carbon monoxide by the reverse water gas shift reaction followed by the Fischer-Tropsch synthesis (FTS). In the present work CO2 hydrogenation over iron-based catalysts (Fe, FeCr, FeK) deposited on a carbon carrier has been studied. The catalyst structure has been investigated by XRD, TEM, XPS, Mössbauer spectroscopy and in situ magnetometry. Spinel-type oxide phases (magnetite Fe3O4; maggemite γ-Fe2O3, and, in the case of FeCr/C catalyst, iron chromite Fe1+xCr2-xO4) are formed on the catalysts, and they contribute exclusively to the CO production. Iron carbides, active in FTS, are formed on Fe- and FeK-catalysts during pre-activation in reducing environment and then during the reaction. The reaction over the 20Fe1K/C catalyst in supercritical high-density CO2/H2 substrate (400 °C, 8.5 MPa) leads to 72 % selectivity for C1-C12+ hydrocarbons (alkanes and alkenes). Under the same conditions, iron carbides do not form on the FeCr/C catalysts, and CO2 hydrogenation results in the CO formation with the selectivity of 90-100 %.
Collapse
Affiliation(s)
- Tatiana V Bogdan
- Laboratory of Heterogeneous Catalysis and Processes in Supercritical Media, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences (ZIOC RAS), Leninsky Prospect, 47, 119991, Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1-3, 119991, Moscow, Russia
| | - Aleksey E Koklin
- Laboratory of Heterogeneous Catalysis and Processes in Supercritical Media, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences (ZIOC RAS), Leninsky Prospect, 47, 119991, Moscow, Russia
| | - Igor I Mishanin
- Laboratory of Heterogeneous Catalysis and Processes in Supercritical Media, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences (ZIOC RAS), Leninsky Prospect, 47, 119991, Moscow, Russia
| | - Petr A Chernavskii
- Laboratory of Heterogeneous Catalysis and Processes in Supercritical Media, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences (ZIOC RAS), Leninsky Prospect, 47, 119991, Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1-3, 119991, Moscow, Russia
| | - Denis A Pankratov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1-3, 119991, Moscow, Russia
| | - Oksun A Kim
- Laboratory of Heterogeneous Catalysis and Processes in Supercritical Media, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences (ZIOC RAS), Leninsky Prospect, 47, 119991, Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1-3, 119991, Moscow, Russia
| | - Viktor I Bogdan
- Laboratory of Heterogeneous Catalysis and Processes in Supercritical Media, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences (ZIOC RAS), Leninsky Prospect, 47, 119991, Moscow, Russia
| |
Collapse
|
6
|
Liu J, Zhang Y, Peng C. Recent Advances Hydrogenation of Carbon Dioxide to Light Olefins over Iron-Based Catalysts via the Fischer-Tropsch Synthesis. ACS OMEGA 2024; 9:25610-25624. [PMID: 38911759 PMCID: PMC11191082 DOI: 10.1021/acsomega.4c03075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/25/2024]
Abstract
The massive burning of fossil fuels has been important for economic and social development, but the increase in the CO2 concentration has seriously affected environmental sustainability. In industrial and agricultural production, light olefins are one of the most important feedstocks. Therefore, the preparation of light olefins by CO2 hydrogenation has been intensively studied, especially for the development of efficient catalysts and for the application in industrial production. Fe-based catalysts are widely used in Fischer-Tropsch synthesis due to their high stability and activity, and they also exhibit excellent catalytic CO2 hydrogenation to light olefins. This paper systematically summarizes and analyzes the reaction mechanism of Fe-based catalysts, alkali and transition metal modifications, interactions between active sites and carriers, the synthesis process, and the effect of the byproduct H2O on catalyst performance. Meanwhile, the challenges to the development of CO2 hydrogenation for light olefin synthesis are presented, and future development opportunities are envisioned.
Collapse
Affiliation(s)
- Jiangtao Liu
- State Key Laboratory of Fine
Chemicals, School of Chemical Engineering, Dalian University of Technology, 116024 Dalian, Liaoning P.R. China
| | - Yongchun Zhang
- State Key Laboratory of Fine
Chemicals, School of Chemical Engineering, Dalian University of Technology, 116024 Dalian, Liaoning P.R. China
| | - Chong Peng
- State Key Laboratory of Fine
Chemicals, School of Chemical Engineering, Dalian University of Technology, 116024 Dalian, Liaoning P.R. China
| |
Collapse
|
7
|
Chen Y, Liu J, Chen X, Gu S, Wei Y, Wang L, Wan H, Guan G. Development of Multifunctional Catalysts for the Direct Hydrogenation of Carbon Dioxide to Higher Alcohols. Molecules 2024; 29:2666. [PMID: 38893540 PMCID: PMC11173553 DOI: 10.3390/molecules29112666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
The direct hydrogenation of greenhouse gas CO2 to higher alcohols (C2+OH) provides a new route for the production of high-value chemicals. Due to the difficulty of C-C coupling, the formation of higher alcohols is more difficult compared to that of other compounds. In this review, we summarize recent advances in the development of multifunctional catalysts, including noble metal catalysts, Co-based catalysts, Cu-based catalysts, Fe-based catalysts, and tandem catalysts for the direct hydrogenation of CO2 to higher alcohols. Possible reaction mechanisms are discussed based on the structure-activity relationship of the catalysts. The reaction-coupling strategy holds great potential to regulate the reaction network. The effects of the reaction conditions on CO2 hydrogenation are also analyzed. Finally, we discuss the challenges and potential opportunities for the further development of direct CO2 hydrogenation to higher alcohols.
Collapse
Affiliation(s)
- Yun Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 210009, China; (Y.C.); (J.L.); (X.C.); (S.G.); (G.G.)
| | - Jinzhao Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 210009, China; (Y.C.); (J.L.); (X.C.); (S.G.); (G.G.)
| | - Xinyu Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 210009, China; (Y.C.); (J.L.); (X.C.); (S.G.); (G.G.)
| | - Siyao Gu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 210009, China; (Y.C.); (J.L.); (X.C.); (S.G.); (G.G.)
| | - Yibin Wei
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China;
| | - Lei Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 210009, China; (Y.C.); (J.L.); (X.C.); (S.G.); (G.G.)
| | - Hui Wan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 210009, China; (Y.C.); (J.L.); (X.C.); (S.G.); (G.G.)
| | - Guofeng Guan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 210009, China; (Y.C.); (J.L.); (X.C.); (S.G.); (G.G.)
| |
Collapse
|
8
|
Wang K, Li Z, Gao X, Ma Q, Zhang J, Zhao TS, Tsubaki N. Novel heterogeneous Fe-based catalysts for carbon dioxide hydrogenation to long chain α-olefins-A review. ENVIRONMENTAL RESEARCH 2024; 242:117715. [PMID: 37996000 DOI: 10.1016/j.envres.2023.117715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/17/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
The thermocatalytic conversion of carbon dioxide (CO2) into high value-added chemicals provides a strategy to address the environmental problems caused by excessive carbon emissions and the sustainable production of chemicals. Significant progress has been made in the CO2 hydrogenation to long chain α-olefins, but controlling C-O activation and C-C coupling remains a great challenge. This review focuses on the recent advances in catalyst design concepts for the synthesis of long chain α-olefins from CO2 hydrogenation. We have systematically summarized and analyzed the ingenious design of catalysts, reaction mechanisms, the interaction between active sites and supports, structure-activity relationship, influence of reaction process parameters on catalyst performance, and catalyst stability, as well as the regeneration methods. Meanwhile, the challenges in the development of the long chain α-olefins synthesis from CO2 hydrogenation are proposed, and the future development opportunities are prospected. The aim of this review is to provide a comprehensive perspective on long chain α-olefins synthesis from CO2 hydrogenation to inspire the invention of novel catalysts and accelerate the development of this process.
Collapse
Affiliation(s)
- Kangzhou Wang
- School of Materials and New Energy, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Ziqin Li
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Xinhua Gao
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University, Yinchuan, 750021, Ningxia, China.
| | - Qingxiang Ma
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Jianli Zhang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University, Yinchuan, 750021, Ningxia, China.
| | - Tian-Sheng Zhao
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Noritatsu Tsubaki
- Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan.
| |
Collapse
|
9
|
He R, Wang Y, Li M, Liu J, Gu Y, Wang W, Liu Q, Tsubaki N, Wu M. Tailoring the CO 2 Hydrogenation Performance of Fe-Based Catalyst via Unique Confinement Effect of the Carbon Shell. Chemistry 2023; 29:e202301918. [PMID: 37641166 DOI: 10.1002/chem.202301918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 08/31/2023]
Abstract
Even though Fe-based catalysts have been widely employed for CO2 hydrogenation into hydrocarbons, oxygenates, liquid fuels, etc., the precise regulation of their physicochemical properties is needed to enhance the catalytic performance. Herein, under the guidance of the traditional concept in heterogeneous catalysis-confinement effect, a core-shell structured catalyst Na-Fe3 O4 @C is constructed to boost the CO2 hydrogenation performance. Benefiting from the carbon-chain growth limitation, tailorable H2 /CO2 ratio on the catalytic interface, and unique electronic property that all endowed by the confinement effect, the selectivity and space-time yield of light olefins (C2 = -C4 = ) are as high as 47.4 % and 15.9 g molFe -1 h-1 , respectively, which are all notably higher than that from the shell-less counterpart. The function mechanism of the confinement effect in Fe-based catalysts are clarified in detail by multiple characterization and density functional theory (DFT). This work may offer a new prospect for the rational design of CO2 hydrogenation catalyst.
Collapse
Affiliation(s)
- Ruosong He
- College of New Energy, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yang Wang
- College of New Energy, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
- Department of Applied Chemistry, Graduate School of Engineering, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan
| | - Meng Li
- College of New Energy, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jianxin Liu
- College of New Energy, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yongqiang Gu
- Department of Applied Chemistry, Graduate School of Engineering, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan
| | - Wenhang Wang
- Department of Applied Chemistry, Graduate School of Engineering, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan
| | - Qiang Liu
- National Engineering Research Center of Coal Gasification and Coal-Based Advanced Materials, Shandong Energy Group Co., Ltd., Jinan, 250014, China
| | - Noritatsu Tsubaki
- Department of Applied Chemistry, Graduate School of Engineering, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan
| | - Mingbo Wu
- College of New Energy, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| |
Collapse
|
10
|
Wang Y, Wang W, He R, Li M, Zhang J, Cao F, Liu J, Lin S, Gao X, Yang G, Wang M, Xing T, Liu T, Liu Q, Hu H, Tsubaki N, Wu M. Carbon-Based Electron Buffer Layer on ZnO x -Fe 5 C 2 -Fe 3 O 4 Boosts Ethanol Synthesis from CO 2 Hydrogenation. Angew Chem Int Ed Engl 2023; 62:e202311786. [PMID: 37735097 DOI: 10.1002/anie.202311786] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/23/2023]
Abstract
The conversion of CO2 into ethanol with renewable H2 has attracted tremendous attention due to its integrated functions of carbon elimination and chemical synthesis, but remains challenging. The electronic properties of a catalyst are essential to determine the adsorption strength and configuration of the key intermediates, therefore altering the reaction network for targeted synthesis. Herein, we describe a catalytic system in which a carbon buffer layer is employed to tailor the electronic properties of the ternary ZnOx -Fe5 C2 -Fe3 O4 , in which the electron-transfer pathway (ZnOx →Fe species or carbon layer) ensures the appropriate adsorption strength of -CO* on the catalytic interface, facilitating C-C coupling between -CHx * and -CO* for ethanol synthesis. Benefiting from this unique electron-transfer buffering effect, an extremely high ethanol yield of 366.6 gEtOH kgcat -1 h-1 (with CO of 10 vol % co-feeding) is achieved from CO2 hydrogenation. This work provides a powerful electronic modulation strategy for catalyst design in terms of highly oriented synthesis.
Collapse
Affiliation(s)
- Yang Wang
- College of New Energy, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
- Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan
| | - Wenhang Wang
- Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan
| | - Ruosong He
- College of New Energy, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Meng Li
- College of New Energy, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jinqiang Zhang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Fengliang Cao
- College of New Energy, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jianxin Liu
- College of New Energy, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Shiyuan Lin
- College of New Energy, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Xinhua Gao
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Guohui Yang
- Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan
- State Key Laboratory of Coal Conversion Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
| | - Mingqing Wang
- National Engineering Research Center of Coal Gasification and Coal-Based Advanced Materials, Shandong Energy Group Co., Ltd., Jinan, 250014, China
| | - Tao Xing
- National Engineering Research Center of Coal Gasification and Coal-Based Advanced Materials, Shandong Energy Group Co., Ltd., Jinan, 250014, China
| | - Tao Liu
- National Engineering Research Center of Coal Gasification and Coal-Based Advanced Materials, Shandong Energy Group Co., Ltd., Jinan, 250014, China
| | - Qiang Liu
- National Engineering Research Center of Coal Gasification and Coal-Based Advanced Materials, Shandong Energy Group Co., Ltd., Jinan, 250014, China
| | - Han Hu
- College of New Energy, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Noritatsu Tsubaki
- Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan
| | - Mingbo Wu
- College of New Energy, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| |
Collapse
|
11
|
Conversion of CO2 to Light Hydrocarbons by Using FeCx Catalysts Derived from Iron Nitrate Co-pyrolyzing with Melamine, Bulk g-C3N4, or Defective g-C3N4. CATALYSIS SURVEYS FROM ASIA 2023. [DOI: 10.1007/s10563-023-09391-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
12
|
Wu Y, Zhang Y, Nguyen MV, Chu TTH, Nguyen TB, Dragoi EN, Xia C. Latest insights on eco-friendly metal based-electrocatalyst for oxygen evolution reaction: Challenges, and future perspectives. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
A Review on Green Hydrogen Valorization by Heterogeneous Catalytic Hydrogenation of Captured CO2 into Value-Added Products. Catalysts 2022. [DOI: 10.3390/catal12121555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The catalytic hydrogenation of captured CO2 by different industrial processes allows obtaining liquid biofuels and some chemical products that not only present the interest of being obtained from a very low-cost raw material (CO2) that indeed constitutes an environmental pollution problem but also constitute an energy vector, which can facilitate the storage and transport of very diverse renewable energies. Thus, the combined use of green H2 and captured CO2 to obtain chemical products and biofuels has become attractive for different processes such as power-to-liquids (P2L) and power-to-gas (P2G), which use any renewable power to convert carbon dioxide and water into value-added, synthetic renewable E-fuels and renewable platform molecules, also contributing in an important way to CO2 mitigation. In this regard, there has been an extraordinary increase in the study of supported metal catalysts capable of converting CO2 into synthetic natural gas, according to the Sabatier reaction, or in dimethyl ether, as in power-to-gas processes, as well as in liquid hydrocarbons by the Fischer-Tropsch process, and especially in producing methanol by P2L processes. As a result, the current review aims to provide an overall picture of the most recent research, focusing on the last five years, when research in this field has increased dramatically.
Collapse
|
14
|
Hasan M, Zafar A, Jabbar M, Tariq T, Manzoor Y, Ahmed MM, Hassan SG, Shu X, Mahmood N. Trident Nano-Indexing the Proteomics Table: Next-Version Clustering of Iron Carbide NPs and Protein Corona. Molecules 2022; 27:molecules27185754. [PMID: 36144499 PMCID: PMC9500999 DOI: 10.3390/molecules27185754] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/25/2022] Open
Abstract
Protein corona composition and precise physiological understanding of differentially expressed proteins are key for identifying disease biomarkers. In this report, we presented a distinctive quantitative proteomics table of molecular cell signaling differentially expressed proteins of corona that formed on iron carbide nanoparticles (NPs). High-performance liquid chromatography/electrospray ionization coupled with ion trap mass analyzer (HPLC/ESI-Orbitrap) and MASCOT helped quantify 142 differentially expressed proteins. Among these proteins, 104 proteins showed upregulated behavior and 38 proteins were downregulated with respect to the control, whereas 48, 32 and 24 proteins were upregulated and 8, 9 and 21 were downregulated CW (control with unmodified NPs), CY (control with modified NPs) and WY (modified and unmodified NPs), respectively. These proteins were further categorized on behalf of their regularity, locality, molecular functionality and molecular masses using gene ontology (GO). A STRING analysis was used to target the specific range of proteins involved in metabolic pathways and molecular processing in different kinds of binding functionalities, such as RNA, DNA, ATP, ADP, GTP, GDP and calcium ion bindings. Thus, this study will help develop efficient protocols for the identification of latent biomarkers in early disease detection using protein fingerprints.
Collapse
Affiliation(s)
- Murtaza Hasan
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Department of Biotechnology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- Correspondence: (M.H.); (X.S.); (N.M.)
| | - Ayesha Zafar
- Department of Biotechnology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Maryum Jabbar
- Department of Biotechnology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Tuba Tariq
- Department of Biotechnology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Yasmeen Manzoor
- Department of Biotechnology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Mahmood Ahmed
- Department of Biotechnology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Shahbaz Gul Hassan
- College of Information Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xugang Shu
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Correspondence: (M.H.); (X.S.); (N.M.)
| | - Nasir Mahmood
- School of Science, RMIT University, Victoria 3000, Australia
- Correspondence: (M.H.); (X.S.); (N.M.)
| |
Collapse
|
15
|
Chernyak SA, Corda M, Dath JP, Ordomsky VV, Khodakov AY. Light olefin synthesis from a diversity of renewable and fossil feedstocks: state-of the-art and outlook. Chem Soc Rev 2022; 51:7994-8044. [PMID: 36043509 DOI: 10.1039/d1cs01036k] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Light olefins are important feedstocks and platform molecules for the chemical industry. Their synthesis has been a research priority in both academia and industry. There are many different approaches to the synthesis of these compounds, which differ by the choice of raw materials, catalysts and reaction conditions. The goals of this review are to highlight the most recent trends in light olefin synthesis and to perform a comparative analysis of different synthetic routes using several quantitative characteristics: selectivity, productivity, severity of operating conditions, stability, technological maturity and sustainability. Traditionally, on an industrial scale, the cracking of oil fractions has been used to produce light olefins. Methanol-to-olefins, alkane direct or oxidative dehydrogenation technologies have great potential in the short term and have already reached scientific and technological maturities. Major progress should be made in the field of methanol-mediated CO and CO2 direct hydrogenation to light olefins. The electrocatalytic reduction of CO2 to light olefins is a very attractive process in the long run due to the low reaction temperature and possible use of sustainable electricity. The application of modern concepts such as electricity-driven process intensification, looping, CO2 management and nanoscale catalyst design should lead in the near future to more environmentally friendly, energy efficient and selective large-scale technologies for light olefin synthesis.
Collapse
Affiliation(s)
- Sergei A Chernyak
- University of Lille, CNRS, Centrale Lille, University of Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille, France.
| | - Massimo Corda
- University of Lille, CNRS, Centrale Lille, University of Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille, France.
| | - Jean-Pierre Dath
- Direction Recherche & Développement, TotalEnergies SE, TotalEnergies One Tech Belgium, Zone Industrielle Feluy C, B-7181 Seneffe, Belgium
| | - Vitaly V Ordomsky
- University of Lille, CNRS, Centrale Lille, University of Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille, France.
| | - Andrei Y Khodakov
- University of Lille, CNRS, Centrale Lille, University of Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille, France.
| |
Collapse
|
16
|
Hydrogenation of Carbon Dioxide to Value-Added Liquid Fuels and Aromatics over Fe-Based Catalysts Based on the Fischer–Tropsch Synthesis Route. ATMOSPHERE 2022. [DOI: 10.3390/atmos13081238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hydrogenation of CO2 to value-added chemicals and fuels not only effectively alleviates climate change but also reduces over-dependence on fossil fuels. Therefore, much attention has been paid to the chemical conversion of CO2 to value-added products, such as liquid fuels and aromatics. Recently, efficient catalysts have been developed to face the challenge of the chemical inertness of CO2 and the difficulty of C–C coupling. Considering the lack of a detailed summary on hydrogenation of CO2 to liquid fuels and aromatics via the Fischer–Tropsch synthesis (FTS) route, we conducted a comprehensive and systematic review of the research progress on the development of efficient catalysts for hydrogenation of CO2 to liquid fuels and aromatics. In this work, we summarized the factors influencing the catalytic activity and stability of various catalysts, the strategies for optimizing catalytic performance and product distribution, the effects of reaction conditions on catalytic performance, and possible reaction mechanisms for CO2 hydrogenation via the FTS route. Furthermore, we also provided an overview of the challenges and opportunities for future research associated with hydrogenation of CO2 to liquid fuels and aromatics.
Collapse
|
17
|
Xu M, Liu X, Song G, Cai Y, Shi B, Liu Y, Ding X, Yang Z, Tian P, Cao C, Xu J. Regulating iron species compositions by Fe-Al interaction in CO2 hydrogenation. J Catal 2022. [DOI: 10.1016/j.jcat.2022.06.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
18
|
Liu QY, Shang C, Liu ZP. In Situ Active Site for Fe-Catalyzed Fischer-Tropsch Synthesis: Recent Progress and Future Challenges. J Phys Chem Lett 2022; 13:3342-3352. [PMID: 35394796 DOI: 10.1021/acs.jpclett.2c00549] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fischer-Tropsch synthesis (FTS) that converts syngas into long-chain hydrocarbons is a key technology in the chemical industry. As one of the best catalysts for FTS, the Fe-based composite develops rich solid phases (metal, oxides, and carbides) in the catalytic reaction, which triggered the quest for the true active site in catalysis in the past century. Recent years have seen great advances in probing the active-site structure using modern experimental and theoretical tools. This Perspective serves to highlight these latest achievements, focusing on the geometrical structure and thermodynamic stability of Fe carbide bulk phases, the exposed surfaces, and their relationship to FTS activity. The current reaction mechanisms on CO activation and carbon chain growth are also discussed, in the context of theoretical models and experimental evidence. We also present the outlook regarding the current challenges in Fe-based FTS.
Collapse
Affiliation(s)
- Qian-Yu Liu
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Cheng Shang
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Zhi-Pan Liu
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
19
|
Liu X, Xu M, Cao C, Yang Z, Xu J. Effects of Zinc on χ-Fe5C2 for Carbon Dioxide Hydrogenation to Olefins: Insights from Experimental and Density Function Theory Calculations. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Barrios AJ, Peron DV, Chakkingal A, Dugulan AI, Moldovan S, Nakouri K, Thuriot-Roukos J, Wojcieszak R, Thybaut JW, Virginie M, Khodakov AY. Efficient Promoters and Reaction Paths in the CO 2 Hydrogenation to Light Olefins over Zirconia-Supported Iron Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05648] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Alan J. Barrios
- University of Lille, CNRS, Centrale Lille, University of Artois, UMR 8181 − UCCS − Unité de Catalyse et Chimie du Solide, Lille F-59000, France
- Laboratory for Chemical Technology (LCT), Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark 125, Ghent B-9052, Belgium
| | - Deizi V. Peron
- University of Lille, CNRS, Centrale Lille, University of Artois, UMR 8181 − UCCS − Unité de Catalyse et Chimie du Solide, Lille F-59000, France
| | - Anoop Chakkingal
- University of Lille, CNRS, Centrale Lille, University of Artois, UMR 8181 − UCCS − Unité de Catalyse et Chimie du Solide, Lille F-59000, France
- Laboratory for Chemical Technology (LCT), Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark 125, Ghent B-9052, Belgium
| | - Achim Iulian Dugulan
- Fundamental Aspects of Materials and Energy Group, Delft University of Technology, Mekelweg 15, Delft 2629 JB, Netherlands
| | - Simona Moldovan
- Groupe de Physique des Matériaux, CNRS, Université Normandie & INSA Rouen Avenue de l’Université - BP12, St Etienne du Rouvray 76801, France
| | - Kalthoum Nakouri
- Groupe de Physique des Matériaux, CNRS, Université Normandie & INSA Rouen Avenue de l’Université - BP12, St Etienne du Rouvray 76801, France
| | - Joëlle Thuriot-Roukos
- University of Lille, CNRS, Centrale Lille, University of Artois, UMR 8181 − UCCS − Unité de Catalyse et Chimie du Solide, Lille F-59000, France
| | - Robert Wojcieszak
- University of Lille, CNRS, Centrale Lille, University of Artois, UMR 8181 − UCCS − Unité de Catalyse et Chimie du Solide, Lille F-59000, France
| | - Joris W. Thybaut
- Laboratory for Chemical Technology (LCT), Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark 125, Ghent B-9052, Belgium
| | - Mirella Virginie
- University of Lille, CNRS, Centrale Lille, University of Artois, UMR 8181 − UCCS − Unité de Catalyse et Chimie du Solide, Lille F-59000, France
| | - Andrei Y. Khodakov
- University of Lille, CNRS, Centrale Lille, University of Artois, UMR 8181 − UCCS − Unité de Catalyse et Chimie du Solide, Lille F-59000, France
| |
Collapse
|
21
|
Evdokimenko ND, Kapustin GI, Tkachenko OP, Kalmykov KB, Kustov AL. Zn Doping Effect on the Performance of Fe-Based Catalysts for the Hydrogenation of CO2 to Light Hydrocarbons. Molecules 2022; 27:molecules27031065. [PMID: 35164329 PMCID: PMC8838917 DOI: 10.3390/molecules27031065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 11/16/2022] Open
Abstract
In this work, we studied the role of zinc in the composition of supported iron-containing catalysts for the hydrogenation of CO2. Various variants of incipient wetness impregnation of the support were tested to obtain catalyst samples. The best results are shown for samples synthesized by co-impregnation of the support with a common solution of iron and zinc precursors at the same molar ratio of iron and zinc. Catalyst samples were analyzed by various methods: Raman, DRIFT-CO, TPR-H2, XPS, and UV/Vis. The introduction of zinc leads to the formation of a mixed ZnFe2O4 phase. In this case, the activation of the catalyst proceeds through the stage of formation of the metastable wustite phase FeO. The formation of this wustite phase promotes the formation of metallic iron in the composition of the catalyst under the reaction conditions. It is believed that the presence of metallic iron is a necessary step in the formation of iron carbides—that is, active centers for the formation and growth of chain in the hydrocarbons. This leads to an increase in the activity and selectivity of the formation of hydrocarbons in the process of CO2 hydrogenation.
Collapse
Affiliation(s)
- Nikolay Dmitrievich Evdokimenko
- Laboratory of Nanochemistry and Ecology, National University of Science and Technology “MISiS”, 4 Leninsky Prospekt, 119049 Moscow, Russia;
- Laboratory for the Development and Research of Polyfunctional Catalysts, N.D. Zelinsky Institute of Organic Chemistry RAS, 47 Leninsky Prospekt, 119991 Moscow, Russia; (G.I.K.); (O.P.T.)
- Correspondence: ; Tel.: +7-(916)-857-30-68
| | - Gennady Ivanovich Kapustin
- Laboratory for the Development and Research of Polyfunctional Catalysts, N.D. Zelinsky Institute of Organic Chemistry RAS, 47 Leninsky Prospekt, 119991 Moscow, Russia; (G.I.K.); (O.P.T.)
| | - Olga Petrovna Tkachenko
- Laboratory for the Development and Research of Polyfunctional Catalysts, N.D. Zelinsky Institute of Organic Chemistry RAS, 47 Leninsky Prospekt, 119991 Moscow, Russia; (G.I.K.); (O.P.T.)
| | | | - Alexander Leonidovich Kustov
- Laboratory of Nanochemistry and Ecology, National University of Science and Technology “MISiS”, 4 Leninsky Prospekt, 119049 Moscow, Russia;
- Laboratory for the Development and Research of Polyfunctional Catalysts, N.D. Zelinsky Institute of Organic Chemistry RAS, 47 Leninsky Prospekt, 119991 Moscow, Russia; (G.I.K.); (O.P.T.)
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory, GSP-1, 119991 Moscow, Russia;
| |
Collapse
|
22
|
Liu Z, Ding X, Zhu R, Li Y, Wang Y, Sun W, Wang D, Wu L, Zheng L. Investigation on the Effect of Highly Active Ni/ZrO
2
Catalysts Modified by MgO‐Nd
2
O
3
Promoters in CO
2
Methanation at Low Temperature Condition. ChemistrySelect 2022. [DOI: 10.1002/slct.202103774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zhiru Liu
- School of Chemical Engineering Northwest University 229 N.Taibai Road Xi'an Shaanxi 710069 China
| | - Xin Ding
- School of Chemical Engineering Northwest University 229 N.Taibai Road Xi'an Shaanxi 710069 China
| | - Rong Zhu
- School of Chemical Engineering Northwest University 229 N.Taibai Road Xi'an Shaanxi 710069 China
| | - Yanan Li
- School of Chemical Engineering Northwest University 229 N.Taibai Road Xi'an Shaanxi 710069 China
| | - Yuqi Wang
- School of Chemical Engineering Northwest University 229 N.Taibai Road Xi'an Shaanxi 710069 China
| | - Wen Sun
- School of Chemical Engineering Northwest University 229 N.Taibai Road Xi'an Shaanxi 710069 China
| | - Di Wang
- School of Chemical Engineering Northwest University 229 N.Taibai Road Xi'an Shaanxi 710069 China
| | - Le Wu
- School of Chemical Engineering Northwest University 229 N.Taibai Road Xi'an Shaanxi 710069 China
| | - Lan Zheng
- School of Chemical Engineering Northwest University 229 N.Taibai Road Xi'an Shaanxi 710069 China
| |
Collapse
|
23
|
Hafeez S, Harkou E, Al-Salem SM, Goula MA, Dimitratos N, Charisiou ND, Villa A, Bansode A, Leeke G, Manos G, Constantinou A. Hydrogenation of carbon dioxide (CO2) to fuels in microreactors: a review of set-ups and value-added chemicals production. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00479d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A review of CO2 hydrogenation to fuels and value-added chemicals in microreactors.
Collapse
Affiliation(s)
- Sanaa Hafeez
- Department of Chemical Engineering, University College London, London WCIE 7JE, UK
| | - Eleana Harkou
- Department of Chemical Engineering, Cyprus University of Technology, 57 Corner of Athinon and Anexartisias, 3036 Limassol, Cyprus
| | - Sultan M. Al-Salem
- Environment & Life Sciences Research Centre, Kuwait Institute for Scientific Research, P.O. Box: 24885, Safat 13109, Kuwait
| | - Maria A. Goula
- Laboratory of Alternative Fuels and Environmental Catalysis (LAFEC), Department of Chemical Engineering, University of Western Macedonia, GR-50100, Greece
| | - Nikolaos Dimitratos
- Dipartimento di Chimica Industriale e dei Materiali, ALMA MATER STUDIORUM Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Nikolaos D. Charisiou
- Laboratory of Alternative Fuels and Environmental Catalysis (LAFEC), Department of Chemical Engineering, University of Western Macedonia, GR-50100, Greece
| | - Alberto Villa
- Dipartimento di Chimica, Universitá degli Studi di Milano, via Golgi, 20133 Milan, Italy
| | - Atul Bansode
- Catalysis Engineering, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, Netherlands
| | - Gary Leeke
- School of Chemical Engineering, University of Birmingham, B15 2TT, UK
| | - George Manos
- Department of Chemical Engineering, University College London, London WCIE 7JE, UK
| | - Achilleas Constantinou
- Department of Chemical Engineering, Cyprus University of Technology, 57 Corner of Athinon and Anexartisias, 3036 Limassol, Cyprus
| |
Collapse
|
24
|
Cai Z, Zhang F, Yu S, He Z, Cao X, Zhang L, Huang K. PBA-derived high-efficiency iron-based catalysts for CO 2 hydrogenation. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00629d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The PBA-derived iron based catalyst effectively converts CO2 to hydrocarbons, especially C5+ hydrocarbons.
Collapse
Affiliation(s)
- Zhenyu Cai
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Fenglei Zhang
- Intelligent Transportation System Research Center, Southeast University, Nanjing 211189, P. R. China
| | - Sibing Yu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Zhipeng He
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Xinjie Cao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Lei Zhang
- Intelligent Transportation System Research Center, Southeast University, Nanjing 211189, P. R. China
| | - Kai Huang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| |
Collapse
|
25
|
Recent Advances in the Mitigation of the Catalyst Deactivation of CO2 Hydrogenation to Light Olefins. Catalysts 2021. [DOI: 10.3390/catal11121447] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The catalytic conversion of CO2 to value-added chemicals and fuels has been long regarded as a promising approach to the mitigation of CO2 emissions if green hydrogen is used. Light olefins, particularly ethylene and propylene, as building blocks for polymers and plastics, are currently produced primarily from CO2-generating fossil resources. The identification of highly efficient catalysts with selective pathways for light olefin production from CO2 is a high-reward goal, but it has serious technical challenges, such as low selectivity and catalyst deactivation. In this review, we first provide a brief summary of the two dominant reaction pathways (CO2-Fischer-Tropsch and MeOH-mediated pathways), mechanistic insights, and catalytic materials for CO2 hydrogenation to light olefins. Then, we list the main deactivation mechanisms caused by carbon deposition, water formation, phase transformation and metal sintering/agglomeration. Finally, we detail the recent progress on catalyst development for enhanced olefin yields and catalyst stability by the following catalyst functionalities: (1) the promoter effect, (2) the support effect, (3) the bifunctional composite catalyst effect, and (4) the structure effect. The main focus of this review is to provide a useful resource for researchers to correlate catalyst deactivation and the recent research effort on catalyst development for enhanced olefin yields and catalyst stability.
Collapse
|
26
|
Pawelec B, Guil-López R, Mota N, Fierro JLG, Navarro Yerga RM. Catalysts for the Conversion of CO 2 to Low Molecular Weight Olefins-A Review. MATERIALS 2021; 14:ma14226952. [PMID: 34832354 PMCID: PMC8622015 DOI: 10.3390/ma14226952] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/04/2021] [Accepted: 11/13/2021] [Indexed: 01/05/2023]
Abstract
There is a large worldwide demand for light olefins (C2=-C4=), which are needed for the production of high value-added chemicals and plastics. Light olefins can be produced by petroleum processing, direct/indirect conversion of synthesis gas (CO + H2) and hydrogenation of CO2. Among these methods, catalytic hydrogenation of CO2 is the most recently studied because it could contribute to alleviating CO2 emissions into the atmosphere. However, due to thermodynamic reasons, the design of catalysts for the selective production of light olefins from CO2 presents different challenges. In this regard, the recent progress in the synthesis of nanomaterials with well-controlled morphologies and active phase dispersion has opened new perspectives for the production of light olefins. In this review, recent advances in catalyst design are presented, with emphasis on catalysts operating through the modified Fischer-Tropsch pathway. The advantages and disadvantages of olefin production from CO2 via CO or methanol-mediated reaction routes were analyzed, as well as the prospects for the design of a single catalyst for direct olefin production. Conclusions were drawn on the prospect of a new catalyst design for the production of light olefins from CO2.
Collapse
|
27
|
Theoretical study on low temperature reverse water gas shift (RWGS) mechanism on monatomic transition metal M doped C2N catalyst (M=Cu, Co, Fe). MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
28
|
Wei J, Yao R, Han Y, Ge Q, Sun J. Towards the development of the emerging process of CO 2 heterogenous hydrogenation into high-value unsaturated heavy hydrocarbons. Chem Soc Rev 2021; 50:10764-10805. [PMID: 34605829 DOI: 10.1039/d1cs00260k] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The emerging process of CO2 hydrogenation through heterogenous catalysis into important bulk chemicals provides an alternative strategy for sustainable and low-cost production of valuable chemicals, and brings an important chance for mitigating CO2 emissions. Direct synthesis of the family of unsaturated heavy hydrocarbons such as α-olefins and aromatics via CO2 hydrogenation is more attractive and challenging than the production of short-chain products to modern society, suffering from the difficult control between C-O activation and C-C coupling towards long-chain hydrocarbons. In the past several years, rapid progress has been achieved in the development of efficient catalysts for the process and understanding of their catalytic mechanisms. In this review, we provide a comprehensive, authoritative and critical overview of the substantial progress in the synthesis of α-olefins and aromatics from CO2 hydrogenation via direct and indirect routes. The rational fabrication and design of catalysts, proximity effects of multi-active sites, stability and deactivation of catalysts, reaction mechanisms and reactor design are systematically discussed. Finally, current challenges and potential applications in the development of advanced catalysts, as well as opportunities of next-generation CO2 hydrogenation techniques for carbon neutrality in future are proposed.
Collapse
Affiliation(s)
- Jian Wei
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Ruwei Yao
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Han
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingjie Ge
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Jian Sun
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
29
|
Wang Y, Wang G, Wal LI, Cheng K, Zhang Q, Jong KP, Wang Y. Visualizing Element Migration over Bifunctional Metal‐Zeolite Catalysts and its Impact on Catalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yuhao Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Genyuan Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Lars I. Wal
- Inorganic Chemistry and Catalysis Debye Institute for Nanomaterials Science Utrecht University 3584 CG Utrecht The Netherlands
| | - Kang Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Qinghong Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Krijn P. Jong
- Inorganic Chemistry and Catalysis Debye Institute for Nanomaterials Science Utrecht University 3584 CG Utrecht The Netherlands
| | - Ye Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| |
Collapse
|
30
|
Wang Y, Wang G, van der Wal LI, Cheng K, Zhang Q, de Jong KP, Wang Y. Visualizing Element Migration over Bifunctional Metal-Zeolite Catalysts and its Impact on Catalysis. Angew Chem Int Ed Engl 2021; 60:17735-17743. [PMID: 34101971 DOI: 10.1002/anie.202107264] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Indexed: 11/11/2022]
Abstract
The catalytic performance of composite catalysts is not only affected by the physicochemical properties of each component, but also the proximity and interaction between them. Herein, we employ four representative oxides (In2 O3 , ZnO, Cr2 O3 , and ZrO2 ) to combine with H-ZSM-5 for the hydrogenation of CO2 to hydrocarbons directed by methanol intermediate and clarify the correlation between metal migration and the catalytic performance. The migration of metals to zeolite driven by the harsh reaction conditions can be visualized by electron microscopy, meanwhile, the change of zeolite acidity is also carefully characterized. The protonic sites of H-ZSM-5 are neutralized by mobile indium and zinc species via a solid ion-exchange mechanism, resulting in a drastic decrease of C2+ hydrocarbon products over In2 O3 /H-ZSM-5 and ZnO/H-ZSM-5. While, the thermomigration ability of chromium and zirconium species is not significant, endowing Cr2 O3 /H-ZSM-5 and ZrO2 /H-ZSM-5 catalysts with high selectivity of C2+ hydrocarbons.
Collapse
Affiliation(s)
- Yuhao Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Genyuan Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Lars I van der Wal
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Kang Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Qinghong Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Krijn P de Jong
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Ye Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|