1
|
Liu Y, Shao L, Ding L, Chen X, Bao Y, Chen W. In Situ Anchoring of Co Single Atoms within Keto-Enamine COFs via the Coordination of an Interlayer N Atom with Co for the Enhanced Photocatalytic CO 2 Reduction Efficiency. ACS APPLIED MATERIALS & INTERFACES 2025; 17:26722-26730. [PMID: 40270184 DOI: 10.1021/acsami.5c02762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Single-atom catalysts (SACs) are prone to agglomeration or migration during catalytic processes, making the development of highly dispersible SACs greatly essential for the performance of photocatalytic CO2 reduction. Herein, cobalt-containing keto-enamine covalent organic frameworks (COFs) (Co/TpPa-1) are successfully in situ synthesized by utilizing the interlayer nitrogen atom coordinated with metallic cobalt, which is used to effectively prevent the agglomeration of monometallic atoms to ensure the homogeneous dispersion of SACs in the resulting metalized COFs. In the photocatalytic CO2 reduction, the Co/TpPa-1 composite exhibits significantly enhanced performance compared to the TpPa-1 COFs. The CO yield of 0.05 mM Co/TpPa-1 composite is approximately 414.5 μmol g-1 h-1, representing a two-order-of-magnitude improvement over the TpPa-1 COF catalyst (approximately 4.15 μmol g-1 h-1). Moreover, the 0.05 mM Co/TpPa-1 composite shows 99.45% selectivity for CO and good stability, maintaining a over 97% CO2 reduction rate after four cycles. The reason lies in the fact that the interaction between monatomic Co and TpPa-1 COFs enhances visible light absorption and extends the lifetime of the photogenerated carriers by promoting electron transfer through the loaded monatomic Co. This work provides a new idea for the catalyst synthesis with high performance and high selectivity.
Collapse
Affiliation(s)
- Yueli Liu
- State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Luxia Shao
- State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Lingling Ding
- State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Xueyi Chen
- State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Yunan Bao
- Wuhan Brilliant Tech Co. Ltd., Wuhan 430205, P. R. China
| | - Wen Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| |
Collapse
|
2
|
Yuan K, Zhang Y, Yan Z, Yun Q, Song T, Guo J, Feng J, Chen Z, Zhang X, Tang Z, Hu W, Lu T. MOF-Based Dual-Layer Pickering Emulsion: Molecular-Level Gating of Water Delivery at Water-Oil Interface for Efficient Photocatalytic Hydrogenation Using H 2O as a Hydrogen Source. Angew Chem Int Ed Engl 2025; 64:e202421341. [PMID: 39743874 DOI: 10.1002/anie.202421341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/27/2024] [Accepted: 01/01/2025] [Indexed: 01/04/2025]
Abstract
Biphasic system not only presents a promising opportunity for complex catalytic processes, but also is a grand challenge in efficient tandem reactions. As an emerging solar-to-chemical conversion, the visible-light-driven and water-donating hydrogenation combines the sustainability of photocatalysis and economic-value of hydrogenation. However, the key and challenging point is to couple water-soluble photocatalytic hydrogen evolution reaction (HER) with oil-soluble hydrogenation. Herein, we employed metal-organic frameworks (MOFs) and CdS nanorods to construct a MOF-CdS dual-layer Pickering emulsion (water in oil, W/O), which compartmented aqueous phase for photocatalytic HER and oil phase for hydrogenation. The hydrophobic MOF and hydrophilic CdS were isolated at the inner and outer layers of W/O emulsion, respectively. The molecularly regulated hydrophobicity of MOF controlled the water delivery onto CdS photocatalysts, which realized the synergistic regulation of HER and hydrogenation. In the photocatalytic hydrogenation of cinnamaldehyde, the highest yield of MOF-CdS Pickering emulsion reached 187.37 mmol ⋅ g-1 ⋅ h-1, 30 times that of the counterpart without emulsion (6.44 mmol ⋅ g-1 ⋅ h-1). Its apparent quantum yield reached 43.24 % without co-catalysts. To our knowledge, this performance is at a top-level so far. Our work realized the precise regulation of water-oil interface to effectively couple two reactions in different phases, providing new perspective for challenging tandem catalysis.
Collapse
Affiliation(s)
- Kuo Yuan
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
- Department of Chemistry, School of Science & Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin University, Tianjin, 300072, P.R. China
| | - Ying Zhang
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Zhuang Yan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P.R. China
| | - Qinbai Yun
- Department of Chemical and Biological Engineering & Energy Institute, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Tianqun Song
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
- Department of Chemistry, School of Science & Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin University, Tianjin, 300072, P.R. China
| | - Jun Guo
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin, 300387, P.R. China
| | - Jie Feng
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Zheng Chen
- Department of Chemistry, School of Science & Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin University, Tianjin, 300072, P.R. China
| | - Xiaotao Zhang
- Department of Chemistry, School of Science & Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin University, Tianjin, 300072, P.R. China
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P.R. China
| | - Wenping Hu
- Department of Chemistry, School of Science & Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin University, Tianjin, 300072, P.R. China
| | - Tongbu Lu
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| |
Collapse
|
3
|
Xu H, Zheng Y, Shen Y, Mu C, Zhang Z, He Z, Wang Y, Xue J, Zhang L. An environmentally friendly chitosan-loaded BiOCOOH/BiYO 3 photocatalyst for efficient photocatalytic degradation of tetracycline. Int J Biol Macromol 2025; 286:138371. [PMID: 39645134 DOI: 10.1016/j.ijbiomac.2024.138371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/04/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
In this work, the photocatalyst BiOCOOH/BiYO3/Chitosan (CS) was prepared by using CS as the carrier and adsorbent. The performance of the material was studied through the photocatalytic degradation of tetracycline (TC) in water. Theoretical calculations and experiments demonstrate that the formation of BiOCOOH/BiYO3 heterojunctions improves the separation of photogenerated carriers and the absorption of visible light by the material. The introduction of CS improves the difficulties in material recovery, demonstrating exceptional degradation ability for TC under the action of adsorption and photocatalysis. Adsorption kinetics studies indicate that the adsorption of TC by BiOCOOH/BiYO3/CS fits the pseudo-second-order model better, while the adsorption at different concentrations of TC is more suitably described by the Freundlich isotherm model. The synthesis of BiOCOOH/BiYO3/CS was confirmed by the analysis of XRD, XPS, and FTIR. UV-vis DRS showed that the synthesis of BiOCOOH/BiYO3/CS broadened the range of light absorbed by the material. The testing results of PL and transient photocurrent density indicate that BiOCOOH/BiYO3 exhibits a higher efficiency in separating photogenerated charge carriers. After 5 cycles of reuse, the degradation efficiency can still reach 90 % of the initial efficiency, indicating that CS-based photocatalytic composite catalysts have practical application potential in the field of water pollution treatment.
Collapse
Affiliation(s)
- Haoyang Xu
- College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, People's Republic of China.
| | - Yage Zheng
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, People's Republic of China
| | - Yue Shen
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, People's Republic of China
| | - Chaoqun Mu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, People's Republic of China
| | - Zhiqiang Zhang
- Department of Material and Chemical engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, People's Republic of China
| | - Zhixian He
- Instrumental Analysis Center, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, People's Republic of China
| | - Yao Wang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, People's Republic of China
| | - Juanqin Xue
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, People's Republic of China
| | - Liang Zhang
- College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, People's Republic of China; School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, People's Republic of China.
| |
Collapse
|
4
|
Feng B, Wang Q, Liu P, Yuan Z, Pan D, Ye M, Shen K, Xin Z. Z-scheme heterojunction enhanced photocatalytic performance for CO 2 reduction to CH 4. NANOSCALE 2024; 16:17616-17623. [PMID: 39230059 DOI: 10.1039/d4nr02897j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Due to the high charge separation efficiency leading to high photocatalytic activity, there has been significant interest in enhancing the charge separation ability of photocatalysts by controlling the heterojunction structure. To investigate the effect of the heterojunction structure on the photocatalytic performance of composite catalysts and understand its corresponding mechanism, a Z-scheme ZnFe2O4/ZnO/CdS heterojunction was constructed using the ultrasound method and used for CO2 photoreduction. The Z-scheme heterojunction catalyst demonstrates elevated photocatalytic and charge separation efficiencies. Specifically, the conversion rate for the photocatalytic conversion of CO2 to CH4 reaches 105.9 μmol g-1 h-1, surpassing that of the majority of previously reported semiconductor photocatalysts like ZnFe2O4/CdS. This research offers a fresh perspective on the development of innovative heterojunction photocatalysts and broadens the utilization of ternary composite materials in CO2 photoreduction.
Collapse
Affiliation(s)
- Bangli Feng
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma'anshan, Anhui 243002, P. R. China.
| | - Qian Wang
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma'anshan, Anhui 243002, P. R. China.
| | - Peng Liu
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma'anshan, Anhui 243002, P. R. China.
| | - Zibo Yuan
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma'anshan, Anhui 243002, P. R. China.
| | - Danxuan Pan
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, P. R. China
| | - Mingfu Ye
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, P. R. China
| | - Kejing Shen
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma'anshan, Anhui 243002, P. R. China.
| | - Zhifeng Xin
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma'anshan, Anhui 243002, P. R. China.
| |
Collapse
|
5
|
Wang W, Ibarlucea B, Huang C, Dong R, Al Aiti M, Huang S, Cuniberti G. Multi-metallic MOF based composites for environmental applications: synergizing metal centers and interactions. NANOSCALE HORIZONS 2024; 9:1432-1474. [PMID: 38984482 DOI: 10.1039/d4nh00140k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
The escalating threat of environmental issues to both nature and humanity over the past two decades underscores the urgency of addressing environmental pollutants. Metal-organic frameworks (MOFs) have emerged as highly promising materials for tackling these challenges. Since their rise in popularity, extensive research has been conducted on MOFs, spanning from design and synthesis to a wide array of applications, such as environmental remediation, gas storage and separation, catalysis, sensors, biomedical and drug delivery systems, energy storage and conversion, and optoelectronic devices, etc. MOFs possess a multitude of advantageous properties such as large specific surface area, tunable porosity, diverse pore structures, multi-channel design, and molecular sieve capabilities, etc., making them particularly attractive for environmental applications. MOF-based composites inherit the excellent properties of MOFs and also exhibit unique physicochemical properties and structures. The tailoring of central coordinated metal ions in MOFs is critical for their adaptability in environmental applications. Although many reviews on monometallic, bimetallic, and polymetallic MOFs have been published, few reviews focusing on MOF-based composites with monometallic, bimetallic, and multi-metallic centers in the context of environmental pollutant treatment have been reported. This review addresses this gap by providing an in-depth overview of the recent progress in MOF-based composites, emphasizing their applications in hazardous gas sensing, electromagnetic wave absorption (EMWA), and pollutant degradation in both aqueous and atmospheric environments and highlighting the importance of the number and type of metal centers present. Additionally, the various categories of MOFs are summarized. MOF-based composites demonstrate significant promise in addressing environmental challenges, and this review provides a clear and valuable perspective on their potential in environmental applications.
Collapse
Affiliation(s)
- Wei Wang
- Institute for Materials Science and Max Bergmann Center for Biomaterials, TUD Dresden University of Technology, Dresden, 01062, Germany.
| | - Bergoi Ibarlucea
- Institute for Materials Science and Max Bergmann Center for Biomaterials, TUD Dresden University of Technology, Dresden, 01062, Germany.
- TECNALIA, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastian, 20009, Spain
| | - Chuanhui Huang
- Center for Advancing Electronics Dresden & Faculty of Chemistry and Food Chemistry, TUD Dresden University of Technology, Mommsenstrasse 4, 01062 Dresden, Germany
| | - Renhao Dong
- Center for Advancing Electronics Dresden & Faculty of Chemistry and Food Chemistry, TUD Dresden University of Technology, Mommsenstrasse 4, 01062 Dresden, Germany
| | - Muhannad Al Aiti
- Institute for Materials Science and Max Bergmann Center for Biomaterials, TUD Dresden University of Technology, Dresden, 01062, Germany.
- Dresden Center for Nanoanalysis, Technische Universität Dresden, 01062 Dresden, Germany
| | - Shirong Huang
- Institute for Materials Science and Max Bergmann Center for Biomaterials, TUD Dresden University of Technology, Dresden, 01062, Germany.
| | - Gianaurelio Cuniberti
- Institute for Materials Science and Max Bergmann Center for Biomaterials, TUD Dresden University of Technology, Dresden, 01062, Germany.
| |
Collapse
|
6
|
Zhang J, Xu H, Zheng Y, Shen Y, Mu C, Wang Y, Niyazi A, He Z, Zhang Z, Zhang L, Xue J. Visible light photocatalytic degradation of oxytetracycline hydrochloride using chitosan-loaded Z-scheme heterostructured material BiOCOOH/O-gC 3N 4. Int J Biol Macromol 2024; 275:133373. [PMID: 38945717 DOI: 10.1016/j.ijbiomac.2024.133373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/10/2024] [Accepted: 06/21/2024] [Indexed: 07/02/2024]
Abstract
In this work, a Z-scheme heterostructured BiOCOOH/O-gC3N4 material was synthesized and immobilized on chitosan (CTS) to obtain the BiOCOOH/O-gC3N4/CTS photocatalytic material for photocatalytic degradation of oxytetracycline hydrochloride (CTC).Our findings indicate that the composite material BiOCOOH/O-gC3N4, as well as the BiOCOOH/O-gC3N4/CTS composite membrane, displayed a significantly higher efficiency in photocatalytic degradation of CTC compared to BiOCOOH alone, owing to the synergistic effect of adsorption and photocatalysis. Following four cycles of use, the composite material retained around 96 % of its initial photocatalytic degradation activity. The addition of CTS in the photocatalytic material resolved issues such as aggregation and difficult recovery commonly encountered with powder materials, thereby facilitating effective collision between the photocatalytic active sites and CTC. Experimental and theoretical calculations provided confirmation that the combination of BiOCOOH and O-gC3N4 effectively enhanced the light absorption capacity and photocatalytic performance. Furthermore, we investigated the influence of environmental factors such as pH value and anions on the photocatalytic degradation experiment, which offers valuable insights for the application of composite catalysts in wastewater treatment.
Collapse
Affiliation(s)
- Jiawen Zhang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, People's Republic of China
| | - Haoyang Xu
- College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, People's Republic of China
| | - Yage Zheng
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, People's Republic of China
| | - Yue Shen
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, People's Republic of China
| | - Chaoqun Mu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, People's Republic of China
| | - Yao Wang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, People's Republic of China.
| | - Aili Niyazi
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, People's Republic of China
| | - Zhixian He
- Instrumental Analysis Center, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, 710055, People's Republic of China
| | - Zhiqiang Zhang
- Department of Material and Chemical engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, 450002, People's Republic of China
| | - Liang Zhang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, People's Republic of China; College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, People's Republic of China.
| | - Juanqin Xue
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, People's Republic of China
| |
Collapse
|
7
|
Shahmirzaee M, Nagai A. An Appraisal for Providing Charge Transfer (CT) Through Synthetic Porous Frameworks for their Semiconductor Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307828. [PMID: 38368249 DOI: 10.1002/smll.202307828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/08/2024] [Indexed: 02/19/2024]
Abstract
In recent years, there has been considerable focus on the development of charge transfer (CT) complex formation as a means to modify the band gaps of organic materials. In particular, CT complexes alternate layers of aromatic molecules with donor (D) and acceptor (A) properties to provide inherent electrical conductivity. In particular, the synthetic porous frameworks as attractive D-A components have been extensively studied in recent years in comparison to existing D-A materials. Therefore, in this work, the synthetic porous frameworks are classified into conjugated microporous polymers (CMPs), covalent organic frameworks (COFs), and metal-organic frameworks (MOFs) and compare high-quality materials for CT in semiconductors. This work updates the overview of the above porous frameworks for CT, starting with their early history regarding their semiconductor applications, and lists CT concepts and selected key developments in their CT complexes and CT composites. In addition, the network formation methods and their functionalization are discussed to provide access to a variety of potential applications. Furthermore, several theoretical investigations, efficiency improvement techniques, and a discussion of the electrical conductivity of the porous frameworks are also highlighted. Finally, a perspective of synthetic porous framework studies on CT performance is provided along with some comparisons.
Collapse
Affiliation(s)
| | - Atsushi Nagai
- ENSEMBLE 3 - Centre of Excellence, Warsaw, 01-919, Poland
| |
Collapse
|
8
|
Li S, Yu H, Wang Y, Wang S, Zhang L, Zhu P, Gao C, Yu J. Exploring a Ni-N 4 Active Site-Based Conjugated Microporous Polymer Z-Scheme Heterojunction Through Covalent Bonding for Visible Light-Driven Photocatalytic CO 2 Conversion in Pure Water. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305900. [PMID: 37786266 DOI: 10.1002/smll.202305900] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/11/2023] [Indexed: 10/04/2023]
Abstract
Designing photocatalysts with efficient charge transport and abundant active sites for photocatalytic CO2 reduction in pure water is considered a potential approach. Herein, a nickel-phthalocyanine containing Ni-N4 active sites-based conjugated microporous polymer (NiPc-CMP), offering highly dispersed metal active sites, satisfactory CO2 adsorption capability, and excellent light harvesting properties, is engineered as a photocatalyst. By virtue of the covalently bonded bridge, an atomic-scale interface between the NiPc-CMP/Bi2 WO6 Z-scheme heterojunction with strong chemical interactions is obtained. The interface creates directional charge transport highways and retains a high redox potential, thereby enhancing the photoexcited charge carrier separation and photocatalytic efficiency. Consequently, the optimal NiPc-CMP/Bi2 WO6 (NCB-3) achieves efficient photocatalytic CO2 reduction performance in pure water under visible-light irradiation without any sacrificial agent or photosensitizer, affording a CO generation rate of 325.9 µmol g-1 with CO selectivity of 93% in 8 h, outperforming those of Bi2 WO6 and NiPc-CMP, individually. Experimental and theoretical calculations reveal the promotion of interfacial photoinduced electron separation and the role of Ni-N4 active sites in photocatalytic reactions. This study presents a high-performance CMP-based Z-scheme heterojunction with an effective interfacial charge-transfer route and rich metal active sites for photocatalytic CO2 conversion.
Collapse
Affiliation(s)
- Shanshan Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Haihan Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Yuwen Wang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan, 250022, China
| | - Shuai Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Lina Zhang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan, 250022, China
| | - Peihua Zhu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Chaomin Gao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| |
Collapse
|
9
|
Xu H, Zhang Y, Wang Y, Zhang L, Zhang Z, Zhong L, He Z, Zheng Y, Shen Y. Heterojunction material BiYO3/g-C3N4 modified with cellulose nanofibers for photocatalytic degradation of tetracycline. Carbohydr Polym 2023; 312:120829. [PMID: 37059555 DOI: 10.1016/j.carbpol.2023.120829] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023]
Abstract
Cellulose nanofibers (CNFs) with large specific surface area and superb adsorption capacity are excellent photocatalyst carriers. In this study, heterojunction powder material BiYO3/g-C3N4 was successfully synthesized for the photocatalytic degradation of tetracycline (TC). The photocatalytic material BiYO3/g-C3N4/CNFs was obtained by loading BiYO3/g-C3N4 on CNFs using electrostatic self-assembly method. BiYO3/g-C3N4/CNFs exhibit a fluffy porous structure and large specific surface area, strong absorption in the visible light range, and the rapid transfer of photogenerated electron-hole pairs. Polymer-modified photocatalytic materials overcome the disadvantages of powder materials that are easy to reunite and difficult to recover. With synergistic effects of adsorption and photocatalysis, the catalyst demonstrated excellent TC removal efficiency, and the composite maintained nearly 90 % of its initial photocatalytic degradation activity after five cycles of use. The superior photocatalytic activity of the catalysts is also attributable to the formation of heterojunctions, and the heterojunction electron transfer pathway was confirmed by experimental studies and theoretical calculations. This work demonstrates that there is great research potential in using polymer modified photocatalysts to improve photocatalyst performance.
Collapse
Affiliation(s)
- Haoyang Xu
- College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, People's Republic of China
| | - Yujuan Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| | - Yao Wang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, People's Republic of China.
| | - Liang Zhang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, People's Republic of China; College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, People's Republic of China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China.
| | - Zhiqiang Zhang
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, People's Republic of China
| | - Lvling Zhong
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, People's Republic of China
| | - Zhixian He
- Instrumental Analysis Center, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, People's Republic of China
| | - Yage Zheng
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, People's Republic of China
| | - Yue Shen
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, People's Republic of China
| |
Collapse
|
10
|
Zhao J, Huang Q, Xie Z, Liu Y, Liu F, Wei F, Wang S, Zhang Z, Yuan R, Wu K, Ding Z, Long J. Hierarchical Hollow-TiO 2@CdS/ZnS Hybrid for Solar-Driven CO 2-Selective Conversion. ACS APPLIED MATERIALS & INTERFACES 2023; 15:24494-24503. [PMID: 37163238 DOI: 10.1021/acsami.3c03255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Light-driven valorization conversion of CO2 is an encouraging carbon-negative pathway that shifts energy-reliance from fossil fuels to renewables. Herein, a hierarchical urchin-like hollow-TiO2@CdS/ZnS (HTO@CdS/ZnS) Z-scheme hybrid synthesized by an in situ self-assembly strategy presents superior photocatalytic CO2-to-CO activity with nearly 100% selectivity. Specifically, benefitting from the reasonable architectural and interface design, as well as surface modification, this benchmarked visible-light-driven photocatalyst achieves a CO output of 62.2 μmol·h-1 and a record apparent quantum yield of 6.54% with the Co(bpy)32+ (bpy = 2,2'-bipyridine) cocatalyst. It rivals all the incumbent selective photocatalytic conversion of CO2 to CO in the CH3CN/H2O/TEOA reaction systems. Specifically, the addition of HTO and stabilized ZnS enables the photocatalyst to effectively upgrade optical and electrical performances, contributing to efficient light-harvesting and photogenerated carrier separation, as well as interfacial charge transfer. The tremendous enhancement of photocatalytic performance reveals the superiority of the Z-scheme heterojunction assembled from HTO and CdS/ZnS, featuring the inner electric field derived from the band bending of HTO@CdS/ZnS make CdS resistant to photocorrosion. This study allows access to inspire studies on rationally modeling and constructing diverse heterostructures for the storage and conversion of renewables and chemicals.
Collapse
Affiliation(s)
- Jiwu Zhao
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Qiuying Huang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Zidong Xie
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Yuan Liu
- State Key Laboratory of Molecular Reaction Dynamics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100864, China
| | - Fengkai Liu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Fen Wei
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Sibo Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Zizhong Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Rusheng Yuan
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Kaifeng Wu
- State Key Laboratory of Molecular Reaction Dynamics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100864, China
| | - Zhengxin Ding
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Jinlin Long
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| |
Collapse
|
11
|
Dong YL, Liu HR, Wang SM, Guan GW, Yang QY. Immobilizing Isatin-Schiff Base Complexes in NH 2-UiO-66 for Highly Photocatalytic CO 2 Reduction. ACS Catal 2023. [DOI: 10.1021/acscatal.2c04588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Yong-Li Dong
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Hao-Ran Liu
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Shao-Min Wang
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Guo-Wei Guan
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Qing-Yuan Yang
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
12
|
Zhao Y, Cui Y, Xie L, Geng K, Wu J, Meng X, Hou H. Rational Construction of Metal Organic Framework Hybrid Assemblies for Visible Light-Driven CO 2 Conversion. Inorg Chem 2023; 62:1240-1249. [PMID: 36631392 DOI: 10.1021/acs.inorgchem.2c03970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Photocatalytic reduction of CO2 to value-added chemicals is known to be a promising approach for CO2 conversion. The design and preparation of ideal photocatalysts for CO2 conversion are of pivotal significance for the sustainable development of the whole society. In this work, we integrated two functional organic linkers to prepare a novel metal organic framework (MOF) photocatalyst {[Co(9,10-bis(4-pyridyl)anthracene)0.5(bpda)]·4DMF} (Co-MOF). The existence of anthryl and amino groups leads to a wide range of visible light absorption and efficient separation of photogenerated electrons. To extend the lifetime of photogenerated electrons in the photocatalytic system, we modified Co-MOF particles onto g-C3N4. As expected, Co-MOF/g-C3N4 composites exhibited an ultrahigh selectivity (more than 97%) in the photocatalytic process, and the highest CO production rate (1824 μmol/g/h) was 7.1 and 27.2 times of Co-MOFs and g-C3N4, respectively. What's more, we also discussed the reaction mechanism of the Co-MOF/g-C3N4 photocatalytic CO2 reduction, and this work paves the pathway for designing photocatalysts with ideal CO2 reduction performance.
Collapse
Affiliation(s)
- Yujie Zhao
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450002, Henan, P. R. China
| | - Yang Cui
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450002, Henan, P. R. China
| | - Lixia Xie
- College of Science, Henan Agricultural University, Zhengzhou 450002, Henan, P. R. China
| | - Kangshuai Geng
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450002, Henan, P. R. China
| | - Jie Wu
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450002, Henan, P. R. China
| | - Xiangru Meng
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450002, Henan, P. R. China
| | - Hongwei Hou
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450002, Henan, P. R. China
| |
Collapse
|
13
|
Fang Z, Yue X, Li F, Xiang Q. Functionalized MOF-Based Photocatalysts for CO 2 Reduction. Chemistry 2023; 29:e202203706. [PMID: 36606747 DOI: 10.1002/chem.202203706] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/07/2023]
Abstract
Metal-organic frameworks (MOFs) materials have become a research forefront in the field of photocatalytic CO2 reduction attributed to their ultra-high specific surface area, adjustable structure, and abundant catalytic active sites. Particularly, MOFs can be facilely tuned to match CO2 photoreduction by utilizing post-modification of metal nodes, functionalization of organic linkers, and combination with other active materials. Herein, the recent advances in the construction strategy of MOF-based photocatalysts materials for CO2 reduction are highlighted. Some systematic modification strategies on MOF-based photocatalysts are also discussed, such as modification of metal sites and organic ligands, construction of heterojunction, introduction of single/dual-atom, and strain engineering. Finally, the future development directions of MOF-based photocatalysts in the field of CO2 reduction are presented.
Collapse
Affiliation(s)
- Zhaohui Fang
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Xiaoyang Yue
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Fang Li
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Quanjun Xiang
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| |
Collapse
|
14
|
Lu J, Wang S, Zhao Y, Ge K, Wang J, Cui H, Yang Y, Yang Y. Photocatalytic reduction of CO2 by two-dimensional Zn-MOF-NH2/Cu heterojunctions. CATAL COMMUN 2023. [DOI: 10.1016/j.catcom.2023.106613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
15
|
Xiao JD, Li R, Jiang HL. Metal-Organic Framework-Based Photocatalysis for Solar Fuel Production. SMALL METHODS 2023; 7:e2201258. [PMID: 36456462 DOI: 10.1002/smtd.202201258] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/31/2022] [Indexed: 06/17/2023]
Abstract
Metal-organic frameworks (MOFs) represent a novel class of crystalline inorganic-organic hybrid materials with tunable semiconducting behavior. MOFs have potential for application in photocatalysis to produce sustainable solar fuels, owing to their unique structural advantages (such as clarity and modifiability) that can facilitate a deeper understanding of the structure-activity relationship in photocatalysis. This review takes the photocatalytic active sites as a particular perspective, summarizing the progress of MOF-based photocatalysis for solar fuel production; mainly including three categories of solar-chemical conversions, photocatalytic water splitting to hydrogen fuel, photocatalytic carbon dioxide reduction to hydrocarbon fuels, and photocatalytic nitrogen fixation to high-energy fuel carriers such as ammonia. This review focuses on the types of active sites in MOF-based photocatalysts and discusses their enhanced activity based on the well-defined structure of MOFs, offering deep insights into MOF-based photocatalysis.
Collapse
Affiliation(s)
- Juan-Ding Xiao
- Institutes of Physical Science and Information Technology, Anhui Graphene Materials Research Center, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Rui Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Hai-Long Jiang
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
16
|
Gu L, Deng G, Huang R, Shi X. Optimization of Fe/Ni organic frameworks with core-shell structures for efficient visible-light-driven reduction of carbon dioxide to carbon monoxide. NANOSCALE 2022; 14:15821-15831. [PMID: 36255381 DOI: 10.1039/d2nr04377g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
To address CO2 emissions caused by the overuse of fossil fuels, photocatalytic CO2 reduction from metal-organic frameworks (MOFs) to valuable chemicals is critical for energy conversion and storage. Core-shell MOFs improve interfacial interactions, increasing the number of active sites in the catalyst, thereby improving the photocatalytic reduction. In this work, the catalytic performance of Fe/Ni-MOFs toward photocatalytic CO2 reduction was improved using a bimetallic strategy. We successfully synthesized a series of Fe/Ni-MOFs with a core-shell structure using a single-step approach combined with hydrothermal synthesis. By altering the synthesis conditions of the bimetallic organic skeleton and contrasting it with a single MOF, we successfully synthesized Fe/Ni-T120 through an efficient photocatalytic reduction of CO2. The results of photocatalytic CO2 reduction experiments indicated that upon using [Ru(bpy)3]Cl2·6H2O as a photosensitizer and triethanolamine (TEOA) and acetonitrile (MeCN) as sacrificial agents, the CO evolution rate of Fe/Ni-T120 reached 9.74 mmol g-1 h-1 and the CO2 to CO selectivity reached up to 92.1%. Additionally, Fe/Ni-T120 has a broad response range to visible light, a high photocurrent intensity, good chemical stability, and strong photocatalytic efficiency, even after repeated cycles. This study proposes a straightforward method for producing adaptable and stable MOFs for effective photocatalytic CO2 reduction that is driven by visible light.
Collapse
Affiliation(s)
- Lin Gu
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resource and Environmental Engineering, Anhui University, Hefei 230601, China.
| | - Guozhi Deng
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resource and Environmental Engineering, Anhui University, Hefei 230601, China.
| | - Ruting Huang
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resource and Environmental Engineering, Anhui University, Hefei 230601, China.
| | - Xianyang Shi
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resource and Environmental Engineering, Anhui University, Hefei 230601, China.
| |
Collapse
|
17
|
Cheng C, Chen D, Li N, Li H, Xu Q, He J, Lu J. NH 2-MIL-125(Ti) modified graphitic carbon nitride with carbon vacancy for efficient photocatalytic NO removal. CHEMOSPHERE 2022; 307:135660. [PMID: 35835237 DOI: 10.1016/j.chemosphere.2022.135660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/25/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
This paper reports the application of NH2-MIL-125(Ti) modified carbon nitride Cv-C3N4 with carbon vacancies in the removal of NO. We performed a series of characterizations of the complex and compared various ratios with the individual components. The results of UV spectrum analysis show that the composite's range of light absorption expanded due to the modification of Ti metal-organic framework. Furthermore, the results of photocurrent and electrical impedance indicate the compound has a better ability to generate and transfer electrons. The increase in the compound's NO removal efficiency (up to 63%) indicates that MOF has a positive effect on Cv-C3N4 modification-a good method for photocatalysis. Moreover, the compound can promote photocatalysis in a favorable direction.
Collapse
Affiliation(s)
- Cheng Cheng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou Industrial Park, Suzhou, 215123, China
| | - Dongyun Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou Industrial Park, Suzhou, 215123, China.
| | - Najun Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou Industrial Park, Suzhou, 215123, China
| | - Hua Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou Industrial Park, Suzhou, 215123, China
| | - Qingfeng Xu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou Industrial Park, Suzhou, 215123, China
| | - Jinhui He
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou Industrial Park, Suzhou, 215123, China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou Industrial Park, Suzhou, 215123, China.
| |
Collapse
|
18
|
Fan WK, Sherryna A, Tahir M. Advances in Titanium Carbide (Ti 3C 2T x ) MXenes and Their Metal-Organic Framework (MOF)-Based Nanotextures for Solar Energy Applications: A Review. ACS OMEGA 2022; 7:38158-38192. [PMID: 36340125 PMCID: PMC9631731 DOI: 10.1021/acsomega.2c05030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Introducing new materials with low cost and superior solar harvesting efficiency requires urgent attention to solve energy and environmental challenges. Titanium carbide (Ti3C2T x ) MXene, a 2D layered material, is a promising solution to solve the issues of existing materials due to their promising conductivity with low cost to function as a cocatalyst/support. On the other hand, metal-organic frameworks (MOFs) are emerging materials due to their high surface area and semiconducting characteristics. Therefore, coupling them would be promising to form composites with higher solar harvesting efficiency. Thus, the main objective of this work to disclose recent development in Ti3C2T x -based MOF nanocomposites for energy conversion applications to produce renewable fuels. MOFs can generate photoinduced electron/hole pairs, followed by transfer of electrons to MXenes through Schottky junctions for photoredox reactions. Currently, the principles, fundamentals, and mechanism of photocatalytic systems with construction of Schottky junctions are critically discussed. Then the basics of MOFs are discussed thoroughly in terms of their physical properties, morphologies, optical properties, and derivatives. The synthesis of Ti3C2T x MXenes and their composites with the formation of surface functionals is systematically illustrated. Next, critical discussions are conducted on design considerations and strategies to engineer the morphology of Ti3C2T x MXenes and MOFs. The interfacial/heterojunction modification strategies of Ti3C2T x MXenes and MOFs are then deeply discussed to understand the roles of both materials. Following that, the applications of MXene-mediated MOF nanotextures in view of CO2 reduction and water splitting for solar fuel production are critically analyzed. Finally, the challenges and a perspective toward the future research of MXene-based MOF composites are disclosed.
Collapse
Affiliation(s)
- Wei Keen Fan
- School
of Chemical and Energy Engineering, Universiti
Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Areen Sherryna
- School
of Chemical and Energy Engineering, Universiti
Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Muhammad Tahir
- Chemical
and Petroleum Engineering Department, UAE
University, P.O. Box 15551, Al Ain, United Arab Emirates
| |
Collapse
|
19
|
Chen J, Abazari R, Adegoke KA, Maxakato NW, Bello OS, Tahir M, Tasleem S, Sanati S, Kirillov AM, Zhou Y. Metal–organic frameworks and derived materials as photocatalysts for water splitting and carbon dioxide reduction. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214664] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
Liu HZ, Liu X, Li B, Luo H, Ma JG, Cheng P. Hybrid Metal-Organic Frameworks Encapsulated Hybrid Ni-Doped CdS Nanoparticles for Visible-Light-Driven CO 2 Reduction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28123-28132. [PMID: 35679596 DOI: 10.1021/acsami.2c08776] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The photocatalytic production of syngas from CO2 and water is an attractive and straightforward way for both solar energy storage and sustainable development. Here, we combined the hybrid shell of a bimetallic metal-organic framework (MOF) Zn/Co-zeolitic imidazolate framework (ZIF) and the hybrid photoactive center of Ni-doped CdS nanoparticles (Ni@CdS) to construct a new "2 + 2" photocatalysis system Ni@CdS⊂Zn/Co-ZIF through a facile self-assembly process, which exhibited a double-synergic effect for visible light harvesting and CO2 conversion, leading to one of the highest photocatalytic syngas production rates and excellent recyclability. The H2/CO of syngas ratios can be readily adjusted by controlling the ratio of Zn/Co in the hybrid MOF shell.
Collapse
Affiliation(s)
- Heng-Zhi Liu
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Haihe Laboratory of Sustainable Chemical Transformations (Tianjin), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiao Liu
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Haihe Laboratory of Sustainable Chemical Transformations (Tianjin), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Bo Li
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Haihe Laboratory of Sustainable Chemical Transformations (Tianjin), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Haiqiang Luo
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Haihe Laboratory of Sustainable Chemical Transformations (Tianjin), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jian-Gong Ma
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Haihe Laboratory of Sustainable Chemical Transformations (Tianjin), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Peng Cheng
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Haihe Laboratory of Sustainable Chemical Transformations (Tianjin), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
21
|
Zhi Q, Zhou J, Liu W, Gong L, Liu W, Liu H, Wang K, Jiang J. Covalent Microporous Polymer Nanosheets for Efficient Photocatalytic CO 2 Conversion with H 2 O. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201314. [PMID: 35363425 DOI: 10.1002/smll.202201314] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Indexed: 06/14/2023]
Abstract
It is still a challenging target to achieve photocatalytic CO2 conversion to valuable chemicals with H2 O as an electron donor. Herein, 2D imide-based covalent organic polymer nanosheets (CoPcPDA-CMP NSs), which integrate cobalt phthalocyanine (CoPc) moiety for reduction half-reaction and 3,4,9,10-perylenetetracarboxylic diimide moiety for oxidation half-reaction, are constructed as a Z-scheme artificial photosynthesis system to complete the overall CO2 reduction reaction. Owing to the outstanding light absorption capacity, charge separation efficiency, and electronic conductivity, CoPcPDA-CMP NSs exhibit excellent photocatalytic activity to reduce CO2 to CO using H2 O as a sacrificial agent with a CO production rate of 14.27 µmol g-1 h-1 and a CO selectivity of 92%, which is competitive to the state-of-the-art visible-light-driven organic photocatalysts towards the overall CO2 reduction reaction. According to a series of spectroscopy experiments, the authors also verify the photoexcited electron transfer processes in the CoPcPDA-CMP NSs photocatalytic system, confirming the Z-scheme photocatalytic mechanism. The present results should be helpful for fabricating high-performance organic photocatalysts for CO2 conversion.
Collapse
Affiliation(s)
- Qianjun Zhi
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Jun Zhou
- College of Science, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Wenbo Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Lei Gong
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Wenping Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Heyuan Liu
- College of Science, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Kang Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| |
Collapse
|
22
|
Ou S, Zhou M, Chen W, Zhang Y, Liu Y. COF-5/CoAl-LDH Nanocomposite Heterojunction for Enhanced Visible-Light-Driven CO 2 Reduction. CHEMSUSCHEM 2022; 15:e202200184. [PMID: 35187792 DOI: 10.1002/cssc.202200184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Photocatalytic conversion of CO2 into value-added chemical fuels is an attractive route to mitigate global warming and the energy crisis. Reasonable design of optical properties and electronic behavior of the photocatalyst are essential to improve their catalytic activity. Herein, the 1D/2D heterojunction by direct in-situ synthesis of the covalent organic framework (COF)-5 colloid on the surface of CoAl layered double hydroxide (LDH) was used as the prospective photocatalyst for CO2 reduction. COF-5/CoAl-LDH nanocomposite achieved 265.4 μmol g-1 of CO with 94.6 % selectivity over CH4 evolution in 5 h under visible light irradiation, which was 4.8 and 2.3 times higher than those of COF-5 colloid and CoAl-LDH, respectively. The enhanced catalytic activity was derived from the increased visible-light activity and the construction of type II-2 heterojunction, which greatly optimized visible light harvesting and accelerated the efficient separation of the photoinduced holes and electrons. This work paves the way for rational design of heterojunction catalysts in photocatalytic CO2 reduction.
Collapse
Affiliation(s)
- Siyong Ou
- State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Min Zhou
- State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Wen Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Yuyao Zhang
- State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Yueli Liu
- State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| |
Collapse
|
23
|
Zhang Y, Xu J, Zhou J, Wang L. Metal-organic framework-derived multifunctional photocatalysts. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63934-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Guo M, Zhang M, Liu R, Zhang X, Li G. State-of-the-Art Advancements in Photocatalytic Hydrogenation: Reaction Mechanism and Recent Progress in Metal-Organic Framework (MOF)-Based Catalysts. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103361. [PMID: 34716687 PMCID: PMC8728825 DOI: 10.1002/advs.202103361] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/22/2021] [Indexed: 05/07/2023]
Abstract
Photocatalytic hydrogenation provides an effective alternative way for the synthesis of industrial chemicals to meet the economic and environment expectations. Especially, over the past few years, metal-organic frameworks (MOFs), featured with tunable structure, porosity, and crystallinity, have been significantly developed as many high-performance catalysts in the field of photocatalysis. In this review, the background and development of photocatalytic hydrogenation are systemically summarized. In particular, the comparison between photocatalysis and thermal catalysis, and the fundamental understanding of photohydrogenation, including reaction pathways, reducing species, regulation of selectivity, and critical parameters of light, are proposed. Moreover, this review highlights the advantages of MOFs-based photocatalysts in the area of photohydrogenation. Typical effective strategies for modifying MOFs-based composites to produce their advantages are concluded. The recent progress in the application of various types of MOFs-based photocatalysts for photohydrogenation of unsaturated organic chemicals and carbon dioxide (CO2 ) is summarized and discussed in detail. Finally, a brief conclusion and personal perspective on current challenges and future developments of photocatalytic hydrogenation processes and MOFs-based photocatalysts are also highlighted.
Collapse
Affiliation(s)
- Mengya Guo
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Mingwei Zhang
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Runze Liu
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Xiangwen Zhang
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
| | - Guozhu Li
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
| |
Collapse
|
25
|
Bai Y, Han M, Li X, Feng S, Lu L, Ma S. Facile and Efficient Photocatalyst for Degradation of Chlortetracycline Promoted by H2O2. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00412g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The composite photocatalyst based on a cerium (III) metal-organic framework (MOF-1 or 1), graphene oxide (GO), and Fe3O4 was constructed for the first time and was investigated for the degradation...
Collapse
|
26
|
Meng X, Yang J, Zhang C, Fu Y, Li K, Sun M, Wang X, Dong C, Ma B, Ding Y. Light-Driven CO2 Reduction over Prussian Blue Analogues as Heterogeneous Catalysts. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04415] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xiangyu Meng
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Junyi Yang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Chenchen Zhang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yufang Fu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Kai Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Minghao Sun
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xingguo Wang
- Sinopec Beijing Research Institute of Chemical Industry, Beijing 100029, P. R. China
| | - Congzhao Dong
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Baochun Ma
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yong Ding
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| |
Collapse
|
27
|
Yu H, Wu X, Mu Q, Wei Z, Gu Y, Yuan X, Lu Y, Deng Z, Peng Y. Robust photocatalytic hydrogen production on metal-organic layers of Al-TCPP with ultrahigh turnover numbers. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.05.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
28
|
Quan Y, Wang G, Li D, Jin Z. CdS Reinforced with CoS X /NiCo-LDH Core-shell Co-catalyst Demonstrate High Photocatalytic Hydrogen Evolution and Durability in Anhydrous Ethanol. Chemistry 2021; 27:16448-16460. [PMID: 34519374 DOI: 10.1002/chem.202102726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Indexed: 11/10/2022]
Abstract
At present, inefficient charge separation of single photocatalyst impedes the development of photocatalytic hydrogen evolution. In this work, the CoSX /NiCo-LDH core-shell co-catalyst was cleverly designed, which exhibit high activity and high stability of hydrogen evolution in anhydrous ethanol system when coupled with CdS. Under visible light (λ≥420 nm) irradiation, the 3 %Co/NiCo/CdS composite photocatalyst exhibits a surprisingly high photocatalytic hydrogen evolution rate of 20.67 mmol g-1 h-1 , which is 59 times than that of the original CdS. Continuous light for 20 h still showed good cycle stability. In addition, the 3 %Co/NiCo/CdS composite catalyst also shows good hydrogen evolution performance under the Na2 S/Na2 SO3 and lactic acid system. The fluorescence (PL), ultraviolet-visible diffuse reflectance (UV-vis) and photoelectrochemical tests show that the coupling of CdS and CoSX /NiCo-LDH not only accelerates the effective transfer of charges, but also greatly increases the absorption range of CdS to visible light. Therefore, the hydrogen evolution activity of the composite photocatalyst has been significantly improved. This work will provide new insights for the construction of new co-catalysts and the development of composite catalysts for hydrogen evolution in multiple systems.
Collapse
Affiliation(s)
- Yongkang Quan
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, P. R. China.,Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan, 750021, P.R.China.,Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, P. R. China
| | - Guorong Wang
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, P. R. China.,Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan, 750021, P.R.China.,Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, P. R. China
| | - Dujuan Li
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, P. R. China.,Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan, 750021, P.R.China.,Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, P. R. China
| | - Zhiliang Jin
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, P. R. China.,Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan, 750021, P.R.China.,Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, P. R. China
| |
Collapse
|
29
|
Wang HN, Zou YH, Fu YM, Meng X, Xue L, Sun HX, Su ZM. Integration of zirconium-based metal-organic framework with CdS for enhanced photocatalytic conversion of CO 2 to CO. NANOSCALE 2021; 13:16977-16985. [PMID: 34610078 DOI: 10.1039/d1nr04417f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
It is a promising strategy to prepare composite photocatalysts based on MOFs and semiconductors for enhancing photocatalytic reduction of carbon dioxide (CO2). A family of binary composite photocatalysts (CdS@UiO-66-NH2) with different CdS contents have been designed and synthesized, which have been explored for photocatalytic reduction of CO2. CdS@UiO-66-NH2 can efficiently convert CO2 into CO under visible light irradiation via the solid-gas mode in the absence of sacrificial agents and photosensitizers. The generation rate of CO can reach up to 280.5 μmol g-1 h-1, which is 2.13-fold and 2.9-fold improvements over the pristine CdS and UiO-66-NH2, respectively, and the selectivity for CO is very high. Furthermore, this kind of photocatalysts can still maintain great photocatalytic activity in CO2/N2 mixed atmosphere with different CO2 concentrations. The outstanding performances of CdS@UiO-66-NH2 may be attributed to the existence of the direct Z-scheme heterojunction, which possesses the enhanced separation and migration of photo-generated charge carriers between UiO-66-NH2 and CdS, available specific surface areas and improved visible light absorption ability as well as abundant reaction active sites. This case reveals that MOF-based composite photocatalysts exhibit promising potential applications in the field of CO2 conversion.
Collapse
Affiliation(s)
- Hai-Ning Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, China.
| | - Yan-Hong Zou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, China.
| | - Yao-Mei Fu
- Shandong Engineering Research Center of Green and High-value Marine Fine Chemical; Weifang University of Science and Technology, Shouguang, 262700, China
| | - Xing Meng
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, China.
| | - Li Xue
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, China.
| | - Hong-Xu Sun
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, China.
| | - Zhong-Min Su
- Shandong Engineering Research Center of Green and High-value Marine Fine Chemical; Weifang University of Science and Technology, Shouguang, 262700, China
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| |
Collapse
|
30
|
Wang R, Yang P, Wang S, Wang X. Distorted carbon nitride nanosheets with activated n → π* transition and preferred textural properties for photocatalytic CO2 reduction. J Catal 2021. [DOI: 10.1016/j.jcat.2021.08.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
31
|
The Surge of Metal-Organic-Framework (MOFs)-Based Electrodes as Key Elements in Electrochemically Driven Processes for the Environment. Molecules 2021; 26:molecules26185713. [PMID: 34577184 PMCID: PMC8467760 DOI: 10.3390/molecules26185713] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 12/15/2022] Open
Abstract
Metal–organic-frameworks (MOFs) are emerging materials used in the environmental electrochemistry community for Faradaic and non-Faradaic water remediation technologies. It has been concluded that MOF-based materials show improvement in performance compared to traditional (non-)faradaic materials. In particular, this review outlines MOF synthesis and their application in the fields of electron- and photoelectron-Fenton degradation reactions, photoelectrocatalytic degradations, and capacitive deionization physical separations. This work overviews the main electrode materials used for the different environmental remediation processes, discusses the main performance enhancements achieved via the utilization of MOFs compared to traditional materials, and provides perspective and insights for the further development of the utilization of MOF-derived materials in electrified water treatment.
Collapse
|
32
|
Cao Y, Zhang H, Yin Y, Ge B, Ren G, Shao X. Fabrication of visible-light response cadmium sulfide modified superhydrophobic surface for water resource remediation. NANOTECHNOLOGY 2021; 32:435402. [PMID: 34280902 DOI: 10.1088/1361-6528/ac15c9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/18/2021] [Indexed: 06/13/2023]
Abstract
Widespread concern has been attached to the frequent occurrence of pollution by oil slicks and water-soluble pollutants in recent years. The semiconductor photocatalysis is applied to sewage treatment owing to the advantages of energy-conserving and environmental protection. However, its application is limited by the defects of not solving oil slicks and the hard recyclability. In this paper, the high specific surface area and rod-shaped CdS were prepared using template and alkali-treated methods. Next, the alkylated SiO2and alkali-treated CdS were deposited on pure fabric by physical deposition to prepare the multifunctional superhydrophobic fabric. The specific surface area and morphology of alkali-treated CdS were tested by BET specific surface area test and field emission scanning electron microscope. Besides, oil/water separation, water contact angle, and stability test experiments were performed to determine the superhydrophobic performance. Photocatalysis degradation efficiency and cycle degradation stability of multifunctional fabric were characterized by photocatalysis degradation Rh B experiment. Consequently, the alkali-treated CdS displays a high specific surface up to 343 m2g-1. The multifunctional fabric presents excellent superhydrophobic performance with the water contact angle up to 155°. Meanwhile, the water contact angle of multifunctional fabric is always over 150° under various circumstances (acid-base corrosion, soaking time at 100 °C and frictional numbers), indicating that the multifunctional fabric has excellent superhydrophobic stability. Moreover, the fabric also exhibits outstanding photocatalysis performance (the degradation efficiency is 94% after 3 cycles). Our work provides a feasible method for addressing oil slicks on water surface and degrading water-soluble pollutants with extensive application prospects in water resource remediation.
Collapse
Affiliation(s)
- Yuzhe Cao
- School of Materials Science and Engineering, Liaocheng University, Liaocheng Shandong, 252059, People's Republic of China
| | - Hao Zhang
- School of Materials Science and Engineering, Liaocheng University, Liaocheng Shandong, 252059, People's Republic of China
| | - Yibin Yin
- School of Materials Science and Engineering, Liaocheng University, Liaocheng Shandong, 252059, People's Republic of China
| | - Bo Ge
- School of Materials Science and Engineering, Liaocheng University, Liaocheng Shandong, 252059, People's Republic of China
| | - Guina Ren
- School of Environmental and Material Engineering, Yantai University, Yantai, 264405, People's Republic of China
| | - Xin Shao
- School of Physics Science and Information Technology, Liaocheng University, Liaocheng, Shandong, 252059, People's Republic of China
| |
Collapse
|