1
|
Van der Verren M, Corrias A, Vykoukal V, Styskalik A, Aprile C, Debecker DP. Bifunctional Au-Sn-SiO 2 catalysts promote the direct upgrading of glycerol to methyl lactate. NANOSCALE 2024; 16:7988-8001. [PMID: 38572637 DOI: 10.1039/d3nr06518a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Valuable alkyl lactates can be obtained from (waste) glycerol, through a two-step process that entails (i) the oxidation of glycerol to dihydroxyacetone (DHA) catalyzed by support Au nanoparticles and (ii) a rearrangement of DHA with an alcohol effectively catalyzed by Sn-based heterogeneous catalysts. To solve selectivity and processing issues we propose to run the process as a cascade reaction, in one step, and with a single bifunctional catalyst. Tackling the challenge associated with the preparation of such bifunctional catalysts, here, an aerosol-assisted sol-gel route is exploited. The catalysts feature small Au nanoparticles (3-4 nm) embedded at the surface of mesoporous Sn-doped silica microspheres. The preparation successfully leads to insert both active sites in their most active forms, and in close proximity. With the bifunctional catalysts, the yield for the final product of the cascade reaction (methyl lactate) is higher than the DHA yield when only the first reaction is carried out. This highlights a beneficial substrate channeling effect which alleviates side reactions. Interestingly, the bifunctional catalysts also markedly outcompeted mechanical mixtures of the corresponding monofunctional Au- and Sn-based catalysts. Thus, the spatial proximity between the two active sites in bifunctional catalysts is identified as a key to stir the cascade reaction towards high lactate yield.
Collapse
Affiliation(s)
- Margot Van der Verren
- Institute of Condensed Matter and Nanoscience (IMCN), UCLouvain, Place Louis Pasteur 1, 1348 Louvain-La-Neuve, Belgium.
| | - Anna Corrias
- University of Kent, School of Chemistry and Forensic Science, Ingram Building, Canterbury CT2 NH, UK
| | - Vit Vykoukal
- Masaryk University, Department of Chemistry, Kotlarska 2, CZ-61137 Brno, Czech Republic
| | - Ales Styskalik
- Masaryk University, Department of Chemistry, Kotlarska 2, CZ-61137 Brno, Czech Republic
| | - Carmela Aprile
- Université de Namur, Unit of Nanomaterial Chemistry, Department of Chemistry, Namur 5000, Belgium
| | - Damien P Debecker
- Institute of Condensed Matter and Nanoscience (IMCN), UCLouvain, Place Louis Pasteur 1, 1348 Louvain-La-Neuve, Belgium.
| |
Collapse
|
2
|
Maertens A, Aprile C. Indium-Based Silica Materials: Sustainable Syntheses Combined with a Challenging Insertion in SiO 2 Mesoporous Structures. Molecules 2023; 29:102. [PMID: 38202685 PMCID: PMC10779520 DOI: 10.3390/molecules29010102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
Optimized sustainable procedures in both acidic and basic conditions are considered to meet some of the current environmental challenges of the scientific community. In this paper, the successful syntheses of two classes of indium-based silica nanomaterials are reported. Both procedures were conceived to enhance the sustainability of the synthesis methods and promote their preparations at room temperature while avoiding the hydrothermal treatment under static conditions at 100 °C. A fast, room-temperature synthesis of porous nanospheres was conceived together with an "acid-free" procedure for SBA-15-like materials. Moreover, the isomorphic substitution of silicon with indium was achieved. All the materials were deeply characterized to probe their structural, textural and morphological properties (e.g., transmission electron microscopy, N2 physisorption, ss MAS NMR of 29Si). The high specific surface area and the mesoporosity were always preserved even under the mild reaction conditions employed. The honeycomb structure and the spherical morphology of SBA-15-like materials and nanospheres, respectively, were also observed. The insertion of indium was confirmed via X-ray photoelectron spectroscopy (XPS) investigations.
Collapse
Affiliation(s)
| | - Carmela Aprile
- Laboratoire de Chimie des Matériaux Appliqués, Department of Chemistry, Namur Institute of Structured Matter (NISM), University of Namur, 5000 Namur, Belgium;
| |
Collapse
|
3
|
Wintzheimer S, Luthardt L, Cao KLA, Imaz I, Maspoch D, Ogi T, Bück A, Debecker DP, Faustini M, Mandel K. Multifunctional, Hybrid Materials Design via Spray-Drying: Much more than Just Drying. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2306648. [PMID: 37840431 DOI: 10.1002/adma.202306648] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/30/2023] [Indexed: 10/17/2023]
Abstract
Spray-drying is a popular and well-known "drying tool" for engineers. This perspective highlights that, beyond this application, spray-drying is a very interesting and powerful tool for materials chemists to enable the design of multifunctional and hybrid materials. Upon spray-drying, the confined space of a liquid droplet is narrowed down, and its ingredients are forced together upon "falling dry." As detailed in this article, this enables the following material formation strategies either individually or even in combination: nanoparticles and/or molecules can be assembled; precipitation reactions as well as chemical syntheses can be performed; and templated materials can be designed. Beyond this, fragile moieties can be processed, or "precursor materials" be prepared. Post-treatment of spray-dried objects eventually enables the next level in the design of complex materials. Using spray-drying to design (particulate) materials comes with many advantages-but also with many challenges-all of which are outlined here. It is believed that multifunctional, hybrid materials, made via spray-drying, enable very unique property combinations that are particularly highly promising in myriad applications-of which catalysis, diagnostics, purification, storage, and information are highlighted.
Collapse
Affiliation(s)
- Susanne Wintzheimer
- Inorganic Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
- Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, 97082, Würzburg, Germany
| | - Leoni Luthardt
- Inorganic Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
| | - Kiet Le Anh Cao
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan
| | - Inhar Imaz
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona, 08010, Spain
| | - Takashi Ogi
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan
| | - Andreas Bück
- Institute of Particle Technology, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 4, 91058, Erlangen, Germany
| | - Damien P Debecker
- Université catholique de Louvain (UCLouvain), Institute of Condensed Matter and Nanosciences (IMCN), Place Louis Pasteur, 1, 348, Louvain-la-Neuve, Belgium
| | - Marco Faustini
- Sorbonne Université, Collège de France, CNRS, Laboratoire Chimie de la Matière Condensée de Paris (LCMCP), Paris, F-75005, France
- Institut Universitaire de France (IUF), Paris, 75231, France
| | - Karl Mandel
- Inorganic Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
- Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, 97082, Würzburg, Germany
| |
Collapse
|
4
|
De Marco ML, Baaziz W, Sharna S, Devred F, Poleunis C, Chevillot-Biraud A, Nowak S, Haddad R, Odziomek M, Boissière C, Debecker DP, Ersen O, Peron J, Faustini M. High-Entropy-Alloy Nanocrystal Based Macro- and Mesoporous Materials. ACS NANO 2022; 16:15837-15849. [PMID: 36066922 DOI: 10.1021/acsnano.2c05465] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
High-entropy-alloy (HEA) nanoparticles are attractive for several applications in catalysis and energy. Great efforts are currently devoted to establish composition-property relationships to improve catalytic activity or selectivity. Equally importantly, developing practical fabrication methods for shaping HEA-based materials into complex architectures is a key requirement for their utilization in catalysis. However, shaping nano-HEAs into hierarchical structures avoiding demixing or collapse remains a great challenge. Herein, we overcome this issue by introducing a simple soft-chemistry route to fabricate ordered macro- and mesoporous materials based on HEA nanoparticles, with high surface area, thermal stability, and catalytic activity toward CO oxidation. The process is based on spray-drying from an aqueous solution containing five different noble metal precursors and polymer latex beads. Upon annealing, the polymer plays a double role: templating and reducing agent enabling formation of HEA nanoparticle-based porous networks at only 350 °C. The formation mechanism and the stability of the macro- and mesoporous materials were investigated by a set of in situ characterization techniques; notably, in situ transmission electron microscopy unveiled that the porous structure is stable up to 800 °C. Importantly, this process is green, scalable, and versatile and could be potentially extended to other classes of HEA materials.
Collapse
Affiliation(s)
- Maria Letizia De Marco
- Laboratoire Chimie de la Matiere Condensée de Paris (LCMCP), Sorbonne Université-CNRS, 4, Place Jussieu, 75005 Paris, France
| | - Walid Baaziz
- Institut de Physique et de Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg-CNRS, 23, Rue du Loess, 67200 Strasbourg, France
| | - Sharmin Sharna
- Institut de Physique et de Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg-CNRS, 23, Rue du Loess, 67200 Strasbourg, France
| | - François Devred
- Institute of Condensed Matter ad Nanosciences (IMCN), Université Catholique de Louvain (UCLouvain), 1, Place Louis Pasteur, 1348 Louvain-la-Neuve, Belgium
| | - Claude Poleunis
- Institute of Condensed Matter ad Nanosciences (IMCN), Université Catholique de Louvain (UCLouvain), 1, Place Louis Pasteur, 1348 Louvain-la-Neuve, Belgium
| | | | - Sophie Nowak
- Université Paris Cité, CNRS, ITODYS, F-75013 Paris, France
| | - Ryma Haddad
- Laboratoire Chimie de la Matiere Condensée de Paris (LCMCP), Sorbonne Université-CNRS, 4, Place Jussieu, 75005 Paris, France
| | - Mateusz Odziomek
- Laboratoire Chimie de la Matiere Condensée de Paris (LCMCP), Sorbonne Université-CNRS, 4, Place Jussieu, 75005 Paris, France
| | - Cédric Boissière
- Laboratoire Chimie de la Matiere Condensée de Paris (LCMCP), Sorbonne Université-CNRS, 4, Place Jussieu, 75005 Paris, France
| | - Damien P Debecker
- Institute of Condensed Matter ad Nanosciences (IMCN), Université Catholique de Louvain (UCLouvain), 1, Place Louis Pasteur, 1348 Louvain-la-Neuve, Belgium
| | - Ovidiu Ersen
- Institut de Physique et de Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg-CNRS, 23, Rue du Loess, 67200 Strasbourg, France
| | - Jennifer Peron
- Université Paris Cité, CNRS, ITODYS, F-75013 Paris, France
| | - Marco Faustini
- Laboratoire Chimie de la Matiere Condensée de Paris (LCMCP), Sorbonne Université-CNRS, 4, Place Jussieu, 75005 Paris, France
| |
Collapse
|
5
|
Soumoy L, Célis C, Debecker DP, Armandi M, Fiorilli S, Aprile C. Hafnium-doped silica nanotubes for the upgrading of glycerol into solketal: enhanced performances and in-depth structure-activity correlation. J Catal 2022. [DOI: 10.1016/j.jcat.2022.04.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Catalytic Conversion of Glycerol into Hydrogen and Value-Added Chemicals: Recent Research Advances. Catalysts 2021. [DOI: 10.3390/catal11121455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In recent decades, the use of biomass as alternative resources to produce renewable and sustainable biofuels such as biodiesel has gained attention given the situation of the progressive exhaustion of easily accessible fossil fuels, increasing environmental concerns, and a dramatically growing global population. The conventional transesterification of edible, nonedible, or waste cooking oils to produce biodiesel is always accompanied by the formation of glycerol as the by-product. Undeniably, it is essential to economically use this by-product to produce a range of valuable fuels and chemicals to ensure the sustainability of the transesterification process. Therefore, recently, glycerol has been used as a feedstock for the production of value-added H2 and chemicals. In this review, the recent advances in the catalytic conversion of glycerol to H2 and high-value chemicals are thoroughly discussed. Specifically, the activity, stability, and recyclability of the catalysts used in the steam reforming of glycerol for H2 production are covered. In addition, the behavior and performance of heterogeneous catalysts in terms of the roles of active metal and support toward the formation of acrolein, lactic acid, 1,3-propanediol, and 1,2-propanediol from glycerol are reviewed. Recommendations for future research and main conclusions are provided. Overall, this review offers guidance and directions for the sufficient and economical utilization of glycerol to generate fuels and high value chemicals, which will ultimately benefit industry, environment, and economy.
Collapse
|