1
|
Mechanistic and Kinetics Insights into Structure Sensitivity of 2,6-Diamino-3,5-Dinitropiridine Hydrogenation over Ni Catalysts. J Catal 2023. [DOI: 10.1016/j.jcat.2023.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
2
|
Zhang J, Shen J, Li D, Long J, Gao X, Feng W, Zhang S, Zhang Z, Wang X, Yang W. Efficiently Light-Driven Nonoxidative Coupling of Methane on Ag/NaTaO 3: A Case for Molecular-Level Understanding of the Coupling Mechanism. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Jiangjie Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou350106, P. R. China
| | - Jinni Shen
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou350106, P. R. China
| | - Dongmiao Li
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou350106, P. R. China
| | - Jinlin Long
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou350106, P. R. China
| | - Xiaochen Gao
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, SINOPEC Shanghai Research Institute of Petrochemical Technology, Shanghai201208, P. R. China
| | - Wenhui Feng
- Hunan Province Key Laboratory of Applied Environmental Photocatalysis, Changsha University, Changsha410022, P. R. China
| | - Shiying Zhang
- Hunan Province Key Laboratory of Applied Environmental Photocatalysis, Changsha University, Changsha410022, P. R. China
| | - Zizhong Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou350106, P. R. China
- Qingyuan Innovation Laboratory, Quanzhou362801, P. R. China
| | - Xuxu Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou350106, P. R. China
| | - Weimin Yang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, SINOPEC Shanghai Research Institute of Petrochemical Technology, Shanghai201208, P. R. China
| |
Collapse
|
3
|
Chen W, Qian G, Wan Y, Chen D, Zhou X, Yuan W, Duan X. Mesokinetics as a Tool Bridging the Microscopic-to-Macroscopic Transition to Rationalize Catalyst Design. Acc Chem Res 2022; 55:3230-3241. [PMID: 36321554 DOI: 10.1021/acs.accounts.2c00483] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Heterogeneous catalysis is the workhorse of the chemical industry, and a heterogeneous catalyst possesses numerous active sites working together to drive the conversion of reactants to desirable products. Over the decades, much focus has been placed on identifying the factors affecting the active sites to gain deep insights into the structure-performance relationship, which in turn guides the design and preparation of more active, selective, and stable catalysts. However, the molecular-level interplay between active sites and catalytic function still remains qualitative or semiquantitative, ascribed to the difficulty and uncertainty in elucidating the nature of active sites for its controllable manipulation. Hence, bridging the microscopic properties of active sites and the macroscopic catalytic performance, that is, microscopic-to-macroscopic transition, to afford a quantitative description is intriguing yet challenging, and progress toward this promises to revolutionize catalyst design and preparation.In this Account, we propose mesokinetics modeling, for the first time enabling a quantitative description of active site characteristics and the related mechanistic information, as a versatile tool to guide rational catalyst design. Exemplified by a pseudo-zero-order reaction, the kinetics derivation from the Pt particle size-sensitive catalytic activity and size-insensitive activation energy suggests only one type of surface site as the dominant active site, in which the Pt(111) with almost unchanged turnover frequency (TOF111) is further identified as the dominating active site. Such a method has been extended to identify and quantify the number (Ni) of active sites for various thermo-, electro-, and photocatalysts in chemical synthesis, hydrogen generation, environment application, etc. Then, the kinetics derivation from the kinetic compensation effects suggests a thermodynamic balance between the activation entropy and enthalpy, which exhibit linear dependences on Pt charge. Accordingly, the Pt charge can serve as a catalytic descriptor for its quantitative determination of TOFi. This strategy has been further applied to Pt-catalyzed CO oxidation with nonzero-order reaction characteristic by taking the site coverages of surface species into consideration.Hence, substituting the above statistical correlations of Ni and TOFi into the rate equation R = ∑Ni × TOFi offers the mesokinetics model, which can precisely predict catalytic function and screen catalysts. Finally, based on the disentanglement of the factors underlying Pt electronic structures, a de novo strategy, from the interfacial charge distribution to reaction mechanism, kinetics, and thermodynamics parameters of the rate-determining step, and ultimately catalytic performance, is developed to map the unified mechanistic and kinetics picture of reaction. Overall, the mesokinetics not only demonstrates much potential to elucidate the quantitative interplay between active sites and catalytic activity but also provides a new research direction in kinetics analysis to rationalize catalyst design.
Collapse
Affiliation(s)
- Wenyao Chen
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Gang Qian
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Ying Wan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - De Chen
- Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Xinggui Zhou
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Weikang Yuan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xuezhi Duan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
4
|
Cheng S, Meng T, Mao D, Guo X, Yu J. Selective Hydrogenation of Dimethyl Oxalate to Methyl Glycolate over Boron-Modified Ag/SiO 2 Catalysts. ACS OMEGA 2022; 7:41224-41235. [PMID: 36406499 PMCID: PMC9670726 DOI: 10.1021/acsomega.2c04880] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
The addition of boron (B) as a promoter to the Ag/SiO2 catalyst for the selective hydrogenation of dimethyl oxalate (DMO) to methyl glycolate (MG) was investigated. A comparison of the preparation method for incorporation of B found that the addition during the ammonia evaporation deposition-precipitation synthesis of the Ag/SiO2 catalyst (Ag-B/SiO2) was inferior to incipient wetness impregnation introduction of the Ag/SiO2 catalyst (B/Ag/SiO2). Moreover, the effects of B contents (0.5-5 wt %) on the physicochemical properties and catalytic performance of the B/Ag/SiO2 catalysts were investigated by XRF, N2-physisorption, XRD, FTIR, TEM, EDX mapping, H2-TPR, NH3-TPD, XPS, and catalytic testing. The results indicated that both the catalytic activity and stability of the Ag/SiO2 catalyst were noticeably enhanced after the introduction of B. The B/Ag/SiO2 catalyst with 1 wt % B showed the best catalytic performance of 100% DMO conversion and 88.3% MG selectivity, which could be attributed to the highest dispersion of the active metal and the smallest Ag particle size stabilized by the strong interaction between silver and boron species.
Collapse
|
5
|
Song L, He Y, Zhou C, Shu G, Ma K, Yue H. Highly selective hydrogenation of dimethyl oxalate to methyl glycolate and ethylene glycol over an amino-assisted Ru-based catalyst. Chem Commun (Camb) 2022; 58:11657-11660. [PMID: 36164825 DOI: 10.1039/d2cc03346a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Ru/NH2-MCM-41 catalyst was prepared via a coordination-assisted strategy for chemoselective hydrogenation of dimethyl oxalate with a high selectivity of methyl glycolate (ca. 100%) and ethylene glycol (>90%) at reaction temperatures of 343 K and 433 K, respectively. The amino groups help to anchor and form stable electron-rich Ru active sites, which accounts for the excellent CO bond activation and hydrogenation selectivity.
Collapse
Affiliation(s)
- Lei Song
- Multi-phases Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Yan He
- Multi-phases Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Changan Zhou
- Multi-phases Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Guoqiang Shu
- Multi-phases Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Kui Ma
- Multi-phases Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Hairong Yue
- Multi-phases Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China. .,Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610207, China
| |
Collapse
|
6
|
Zhou RJ, Yan WQ, Cao YQ, Zhou JH, Sui ZJ, Li W, Chen D, Zhou XG, Zhu YA. Probing the structure sensitivity of dimethyl oxalate partial hydrogenation over Ag nanoparticles: A combined experimental and microkinetic study. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Chen Y, Ge X, Cao Y, Yao C, Zhang J, Qian G, Zhou X, Duan X. Size Dependence of Pd-Catalyzed Hydrogenation of 2,6-Diamino-3,5-dinitropyridine. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuanhan Chen
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiaohu Ge
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yueqiang Cao
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Chang Yao
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jing Zhang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Gang Qian
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xinggui Zhou
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xuezhi Duan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
8
|
Kong X, You X, Yuan P, Wang M, Wu Y, Wang R, Chen J. Mesoporous Cu Catalysts for Dimethyl Oxalate Selective Hydrogenation: Impact of the Cu/Al interface on the Textural Properties and Catalytic Behavior. ChemistrySelect 2022. [DOI: 10.1002/slct.202102609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiangpeng Kong
- Department of Chemistry and Chemical Engineering Taiyuan Institute of Technology Taiyuan 030008 P. R. China
- State Key Laboratory of Coal Conversion Institute of Coal Chemistry Chinese Academy of Sciences Taiyuan 030001 P. R. China
| | - Xinming You
- Department of Chemistry and Chemical Engineering Taiyuan Institute of Technology Taiyuan 030008 P. R. China
- School of Chemical Engineering and Technology North University of China Taiyuan 030051 P. R. China
| | - Peihong Yuan
- Taiyuan Institute of Mine Design and Research Taiyuan 030012 P. R. China
| | - Man Wang
- Department of Chemistry and Chemical Engineering Taiyuan Institute of Technology Taiyuan 030008 P. R. China
| | - Yuehuan Wu
- Department of Chemistry and Chemical Engineering Taiyuan Institute of Technology Taiyuan 030008 P. R. China
| | - Ruihong Wang
- Department of Chemistry and Chemical Engineering Taiyuan Institute of Technology Taiyuan 030008 P. R. China
| | - Jiangang Chen
- State Key Laboratory of Coal Conversion Institute of Coal Chemistry Chinese Academy of Sciences Taiyuan 030001 P. R. China
| |
Collapse
|
9
|
Zhuang Z, Li Y, Chen F, Chen X, Li Z, Wang S, Wang X, Zhu H, Tan Y, Ding Y. Synthesis of methyl glycolate by hydrogenation of dimethyl oxalate with a P modified Co/SiO 2 catalyst. Chem Commun (Camb) 2022; 58:1958-1961. [PMID: 35043789 DOI: 10.1039/d1cc07003g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A P-modified Co/SiO2 catalyst was reported for the first time in the selective hydrogenation of dimethyl oxalate (DMO) to methyl glycolate (MG) reaction and the synthesized Co8P/SiO2 exhibited 94.6% conversion of DMO and 88.1% selectivity to MG during a 300 h continuous test. The doping element of P in the catalyst was indispensable and played an important role in improving the catalytic performance of the Co/SiO2 catalyst.
Collapse
Affiliation(s)
- Zailang Zhuang
- Hangzhou Institute of Advanced studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, China.
| | - Yihui Li
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Fang Chen
- Central Research Institute of China Chemical Science and Technology Co., Ltd, Beijing 100083, China
| | - Xingkun Chen
- Hangzhou Institute of Advanced studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, China.
| | - Zheng Li
- Hangzhou Institute of Advanced studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, China.
| | - Shiyi Wang
- Hangzhou Institute of Advanced studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, China.
| | - Xuepeng Wang
- Hangzhou Institute of Advanced studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, China.
| | - Hejun Zhu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Yuan Tan
- Hangzhou Institute of Advanced studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, China.
| | - Yunjie Ding
- Hangzhou Institute of Advanced studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, China. .,Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.,The State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| |
Collapse
|
10
|
Ni-Modified Ag/SiO 2 Catalysts for Selective Hydrogenation of Dimethyl Oxalate to Methyl Glycolate. NANOMATERIALS 2022; 12:nano12030407. [PMID: 35159752 PMCID: PMC8838820 DOI: 10.3390/nano12030407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/29/2022]
Abstract
Ni-modified Ag/SiO2 catalysts containing 0~3 wt.% Ni were obtained by impregnating Ni species onto Ag/SiO2 followed by calcination and reduction. The catalysts’ performance in the hydrogenation of dimethyl oxalate (DMO) to methyl glycolate (MG) was tested. Ag-0.5%Ni/SiO2 showed the highest catalytic activity among these catalysts and exhibited excellent catalytic stability. The effects of the Ni content on the structure and surface chemical states of catalysts were investigated by XRF, N2-sorption, XRD, TEM, EDX-mapping, FT-IR, H2-TPR, UV–vis, and XPS. The better catalytic activity and stability of Ni-modified Ag/SiO2 (versus Ag/SiO2) are ascribed to the improved dispersion of active Ag species as well as the higher resistance to the growth of Ag particles due to the presence of Ni species.
Collapse
|