1
|
Rodriguez-Olguin MA, Lipin R, Suominen M, Ruiz-Zepeda F, Castañeda-Morales E, Manzo-Robledo A, Gardeniers JGE, Flox C, Kallio T, Vandichel M, Susarrey-Arce A. Temperature promotes selectivity during electrochemical CO 2 reduction on NiO:SnO 2 nanofibers. JOURNAL OF MATERIALS CHEMISTRY. A 2024; 12:32821-32835. [PMID: 39219709 PMCID: PMC11363033 DOI: 10.1039/d4ta04116j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Electrolyzers operate over a range of temperatures; hence, it is crucial to design electrocatalysts that do not compromise the product distribution unless temperature can promote selectivity. This work reports a synthetic approach based on electrospinning to produce NiO:SnO2 nanofibers (NFs) for selectively reducing CO2 to formate above room temperature. The NFs comprise compact but disjoined NiO and SnO2 nanocrystals identified with STEM. The results are attributed to the segregation of NiO and SnO2 confirmed with XRD. The NFs are evaluated for the CO2 reduction reaction (CO2RR) over various temperatures (25, 30, 35, and 40 °C). The highest faradaic efficiencies to formate (FEHCOO- ) are reached by NiO:SnO2 NFs containing 50% of NiO and 50% SnO2 (NiOSnO50NF), and 25% of NiO and 75% SnO2 (NiOSnO75NF), at an electroreduction temperature of 40 °C. At 40 °C, product distribution is assessed with in situ differential electrochemical mass spectrometry (DEMS), recognizing methane and other species, like formate, hydrogen, and carbon monoxide, identified in an electrochemical flow cell. XPS and EELS unveiled the FEHCOO- variations due to a synergistic effect between Ni and Sn. DFT-based calculations reveal the superior thermodynamic stability of Ni-containing SnO2 systems towards CO2RR over the pure oxide systems. Furthermore, computational surface Pourbaix diagrams showed that the presence of Ni as a surface dopant increases the reduction of the SnO2 surface and enables the production of formate. Our results highlight the synergy between NiO and SnO2, which can promote the electroreduction of CO2 at temperatures above room temperature.
Collapse
Affiliation(s)
- M A Rodriguez-Olguin
- Mesoscale Chemical Systems, MESA+ Institute, University of Twente P. O. Box 217 Enschede 7500AE The Netherlands
- Department of Chemical Engineering, MESA+ Institute, University of Twente P. O. Box 217 Enschede 7500AE The Netherlands
| | - R Lipin
- School of Chemical Sciences and Chemical Engineering, Bernal Institute, University of Limerick Limerick V94 T9PX Republic of Ireland
| | - M Suominen
- Department of Chemistry and Materials Science, Aalto University School of Chemical Engineering Kemistintie 1 02015 Espoo Finland
| | - F Ruiz-Zepeda
- Department of Materials Chemistry, National Institute of Chemistry Hajdrihova 19 1000 Ljubljana Slovenia
- Department of Physics and Chemistry of Materials, Institute of Metals and Technology Lepi pot 11 Ljubljana Slovenia
| | - E Castañeda-Morales
- Instituto Politécnico Nacional, Laboratorio de Electroquímica y Corrosión, Escuela Superior de Ingeniería Química e Industrias Extractivas Av. Instituto Politécnico Nacional S/N, Unidad Profesional Adolfo López Mateos CP 07708 CDMX Mexico
| | - A Manzo-Robledo
- Instituto Politécnico Nacional, Laboratorio de Electroquímica y Corrosión, Escuela Superior de Ingeniería Química e Industrias Extractivas Av. Instituto Politécnico Nacional S/N, Unidad Profesional Adolfo López Mateos CP 07708 CDMX Mexico
| | - J G E Gardeniers
- Mesoscale Chemical Systems, MESA+ Institute, University of Twente P. O. Box 217 Enschede 7500AE The Netherlands
- Department of Chemical Engineering, MESA+ Institute, University of Twente P. O. Box 217 Enschede 7500AE The Netherlands
| | - C Flox
- Department of Chemistry and Materials Science, Aalto University School of Chemical Engineering Kemistintie 1 02015 Espoo Finland
- Department of Electrical Energy Storage, Iberian Centre for Research in Energy Storage, Campus University of Extremadura Avda. de las Letras, s/n 10004 Cáceres Spain
| | - T Kallio
- Department of Chemistry and Materials Science, Aalto University School of Chemical Engineering Kemistintie 1 02015 Espoo Finland
| | - M Vandichel
- School of Chemical Sciences and Chemical Engineering, Bernal Institute, University of Limerick Limerick V94 T9PX Republic of Ireland
| | - A Susarrey-Arce
- Mesoscale Chemical Systems, MESA+ Institute, University of Twente P. O. Box 217 Enschede 7500AE The Netherlands
- Department of Chemical Engineering, MESA+ Institute, University of Twente P. O. Box 217 Enschede 7500AE The Netherlands
| |
Collapse
|
2
|
Yu Z, Guo C, Pang X, Shen Y, Gao M, Zhao S, Wang Y, Luo G. Coprecipitation Synthesis of Large-Pore-Volume γ-Alumina Nanofibers by Two Serial Membrane Dispersion Microreactors with a Circulating Continuous Phase. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Zhiyuan Yu
- Department of Chemical Engineering, The State Key Lab of Chemical Engineering, Tsinghua University, Beijing100084, China
| | - Chengyu Guo
- PetroChina Petrochemical Research Institute, Beijing102206, China
| | - Xinmei Pang
- PetroChina Petrochemical Research Institute, Beijing102206, China
| | - Yuge Shen
- PetroChina Petrochemical Research Institute, Beijing102206, China
| | - Mingtang Gao
- Department of Chemical Engineering, The State Key Lab of Chemical Engineering, Tsinghua University, Beijing100084, China
| | - Shenyuan Zhao
- Department of Chemical Engineering, The State Key Lab of Chemical Engineering, Tsinghua University, Beijing100084, China
| | - Yujun Wang
- Department of Chemical Engineering, The State Key Lab of Chemical Engineering, Tsinghua University, Beijing100084, China
| | - Guangsheng Luo
- Department of Chemical Engineering, The State Key Lab of Chemical Engineering, Tsinghua University, Beijing100084, China
| |
Collapse
|
3
|
Rodriguez-Olguin MA, Cruz-Herbert RN, Atia H, Bosco M, Fornero EL, Eckelt R, De Haro Del Río DA, Aguirre A, Gardeniers JGE, Susarrey-Arce A. Tuning the catalytic acidity in Al 2O 3 nanofibers with mordenite nanocrystals for dehydration reactions. Catal Sci Technol 2022; 12:4243-4254. [PMID: 35873718 PMCID: PMC9252259 DOI: 10.1039/d2cy00143h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/10/2022] [Indexed: 11/21/2022]
Abstract
Alumina (Al2O3) is one of the most used supports in the chemical industry due to its exceptional thermal stability, surface area, and acidic properties. Mesoscopic structured alumina with adequate acidic properties is important in catalysis to enhance the selectivity and conversion of certain reactions and processes. This study introduces a synthetic method based on electrospinning to produce Al2O3 nanofibers (ANFs) with zeolite mordenite (MOR) nanocrystals (hereafter, hybrid ANFs) to tune the textural and surface acidity properties. The hybrid ANFs with electrospinning form a non-woven network with macropores. ANF-HMOR, i.e., ANFs containing protonated mordenite (HMOR), shows the highest total acidity of ca. 276 μmol g-1 as determined with infrared spectroscopy using pyridine as a molecular probe (IR-Py). IR-Py results reveal that Lewis acid sites are prominently present in the hybrid ANFs. Brønsted acid sites are also observed in the hybrid ANFs and are associated with the HMOR presence. The functionality of hybrid ANFs is evaluated during methanol dehydration to dimethyl ether (DME). The proof of concept reaction reveals that ANF-HMOR is the more active and selective catalyst with 87% conversion and nearly 100% selectivity to DME at 573 K. The results demonstrate that the textural properties and the acid site type and content can be modulated in hybrid ANF structures, synergistically improving the selectivity and conversion during the methanol dehydration reaction. From a broader perspective, our results promote the utilization of hybrid structural materials as a means to tune chemical reactions selectively.
Collapse
Affiliation(s)
- M A Rodriguez-Olguin
- Mesoscale Chemical Systems, MESA+ Institute, University of Twente PO. Box 217, 7500AE Enschede The Netherlands
| | - R N Cruz-Herbert
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas Pedro de Alba S/N San Nicolás de los Garza Nuevo León 64455 Mexico
| | - H Atia
- Leibniz Institute for Catalysis Albert-Einstein-Straße 29a D-18059 Rostock Germany
| | - M Bosco
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), Universidad Nacional del Litoral CONICET, Güemes 3450 S3000GLN Santa Fe Argentina
- Facultad de Ingeniería Química, Universidad Nacional del Litoral (UNL) Santiago del Estero 2829 Santa Fe 3000 Argentina
| | - E L Fornero
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), Universidad Nacional del Litoral CONICET, Güemes 3450 S3000GLN Santa Fe Argentina
- Facultad de Ingeniería en Ciencias Hídricas, UNL, Ciudad Universitaria Ruta Nacional N° 168 - Km 472,4 3000 Santa Fe Argentina
| | - R Eckelt
- Leibniz Institute for Catalysis Albert-Einstein-Straße 29a D-18059 Rostock Germany
| | - D A De Haro Del Río
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas Pedro de Alba S/N San Nicolás de los Garza Nuevo León 64455 Mexico
| | - A Aguirre
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), Universidad Nacional del Litoral CONICET, Güemes 3450 S3000GLN Santa Fe Argentina
| | - J G E Gardeniers
- Mesoscale Chemical Systems, MESA+ Institute, University of Twente PO. Box 217, 7500AE Enschede The Netherlands
| | - A Susarrey-Arce
- Mesoscale Chemical Systems, MESA+ Institute, University of Twente PO. Box 217, 7500AE Enschede The Netherlands
| |
Collapse
|