1
|
Bisarya A, Kathuria L, Das K, Yasmin E, Jasra RV, Dhole S, Kumar A. State-of-the-art advances in homogeneous molecular catalysis for the Guerbet upgrading of bio-ethanol to fuel-grade bio-butanol. Chem Commun (Camb) 2025; 61:2906-2925. [PMID: 39835652 DOI: 10.1039/d4cc05931j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The upgrading of ethanol to n-butanol marks a major breakthrough in the field of biofuel technology, offering the advantages of compatibility with existing infrastructure while simultaneously offering potential benefits in terms of transport efficiency and energy density. With its lower vapour pressure and reduced corrosiveness compared to ethanol, n-butanol is easier not only to manage but also to transport, eliminating the need for costly infrastructure changes. This leads to improved fuel efficiency and reduced fuel consumption. These features position n-butanol as a promising alternative to ethanol in the future of biodiesel. This review article delves into the cutting-edge advancements in upgrading ethanol to butanol, highlighting the critical importance of this transformation in enhancing the value and practical application of biofuels. While traditional methods for making butanol rely heavily on fossil fuels, those that employ ethanol as a starting material are dominated by heterogeneous catalysis, which is limited by the requirement of high temperatures and a lack of selectivity. Homogeneous catalysts have been pivotal in enhancing the efficiency and selectivity of this conversion, owing to their unique mode of operation at the molecular level. A comprehensive review of the various homogeneous catalytic processes employed in the transformation of feedstock-agnostic bio-ethanol to fuel-grade bio-n-butanol is provided here, with a major focus on the key advancements in catalyst design, reaction conditions and mechanisms that have significantly improved the efficiency and selectivity of these Guerbet reactions.
Collapse
Affiliation(s)
- Akshara Bisarya
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| | - Lakshay Kathuria
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| | - Kanu Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| | - Eileen Yasmin
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| | - Raksh Vir Jasra
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
- Reliance Industries Limited, R&D Centre, Vadodara Manufacturing Division, Vadodara - 391346, Gujarat, India
| | - Sunil Dhole
- ChemDist Group of Companies, Plot No. 144 A, Sector 7, PCNTDA Bhosari, Pune - 411026, Maharashtra, India
| | - Akshai Kumar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
| |
Collapse
|
2
|
Sama FJ, Doyle RA, Kariuki BM, Pridmore NE, Sparkes HA, Wingad RL, Wass DF. Backbone-functionalised ruthenium diphosphine complexes for catalytic upgrading of ethanol and methanol to iso-butanol. Dalton Trans 2024; 53:8005-8010. [PMID: 38651270 DOI: 10.1039/d4dt00561a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Efficient catalysts for Guerbet-type ethanol/methanol upgrading to iso-butanol have been developed via Michael addition of a variety of amines to ruthenium-coordinated dppen (1,1-bis(diphenylphosphino)ethylene). All catalysts produce over 50% iso-butanol yield with >90% selectivity in 2 h with catalyst 1 showing the best activity (74% yield after this time). The selectivity and turnover number approach 100% and 1000 respectively using catalyst 6. The presence of uncoordinated functionalised donor groups in these complexes results in a more stable catalyst compared to unfunctionalised analogues.
Collapse
Affiliation(s)
- Folasade J Sama
- Cardiff Catalysis Institute, Cardiff University, Translational Research Hub, Maindy Road, Cathays, Cardiff, Wales, CF24 4HQ, UK.
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Rachel A Doyle
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Benson M Kariuki
- Cardiff Catalysis Institute, Cardiff University, Translational Research Hub, Maindy Road, Cathays, Cardiff, Wales, CF24 4HQ, UK.
| | | | - Hazel A Sparkes
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Richard L Wingad
- Cardiff Catalysis Institute, Cardiff University, Translational Research Hub, Maindy Road, Cathays, Cardiff, Wales, CF24 4HQ, UK.
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Duncan F Wass
- Cardiff Catalysis Institute, Cardiff University, Translational Research Hub, Maindy Road, Cathays, Cardiff, Wales, CF24 4HQ, UK.
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| |
Collapse
|
3
|
Messori A, Martelli G, Piazzi A, Basile F, De Maron J, Fasolini A, Mazzoni R. Molecular Ruthenium Cyclopentadienone Bifunctional Catalysts for the Conversion of Sugar Platforms to Hydrogen. Chempluschem 2023; 88:e202300357. [PMID: 37572103 DOI: 10.1002/cplu.202300357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
Molecular ruthenium cyclopentadienone complexes were employed for the first time as pre-catalysts in the homogeneously catalysed Aqueous Phase Reforming (APR) of glucose. Shvo's complex resulted the best pre-catalyst (loading 2 mol %) with H2 yields up to 28.9 % at 150 °C. Studies of the final mixture allowed to identify the catalyst's resting state as a mononuclear dicarbonyl complex in the extracted organic fraction. In situ NMR experiments and HPLC analyses on the aqueous fraction gave awareness of the presence of sorbitol, fructose, 5-hydroxymethylfurfural and furfural as final fate or intermediates in the transformations under APR conditions. These results were summarized in a proposed mechanism, with particular emphasis on the steps where hydrogen was obtained as the product. Benzoquinone positively affected the catalyst activation when employed as an equimolar additive.
Collapse
Affiliation(s)
- Alessandro Messori
- Department of Industrial Chemistry "Toso Montanari" viale, Risorgimento 4, 40136, Bologna, Italy
- Center for Chemical Catalysis - C3, University of Bologna viale, Risorgimento 4, 40136, Bologna, Italy
| | - Giulia Martelli
- Department of Industrial Chemistry "Toso Montanari" viale, Risorgimento 4, 40136, Bologna, Italy
- Center for Chemical Catalysis - C3, University of Bologna viale, Risorgimento 4, 40136, Bologna, Italy
| | - Andrea Piazzi
- Department of Industrial Chemistry "Toso Montanari" viale, Risorgimento 4, 40136, Bologna, Italy
- Center for Chemical Catalysis - C3, University of Bologna viale, Risorgimento 4, 40136, Bologna, Italy
| | - Francesco Basile
- Department of Industrial Chemistry "Toso Montanari" viale, Risorgimento 4, 40136, Bologna, Italy
- Center for Chemical Catalysis - C3, University of Bologna viale, Risorgimento 4, 40136, Bologna, Italy
| | - Jacopo De Maron
- Department of Industrial Chemistry "Toso Montanari" viale, Risorgimento 4, 40136, Bologna, Italy
- Center for Chemical Catalysis - C3, University of Bologna viale, Risorgimento 4, 40136, Bologna, Italy
| | - Andrea Fasolini
- Department of Industrial Chemistry "Toso Montanari" viale, Risorgimento 4, 40136, Bologna, Italy
- Center for Chemical Catalysis - C3, University of Bologna viale, Risorgimento 4, 40136, Bologna, Italy
| | - Rita Mazzoni
- Department of Industrial Chemistry "Toso Montanari" viale, Risorgimento 4, 40136, Bologna, Italy
- Center for Chemical Catalysis - C3, University of Bologna viale, Risorgimento 4, 40136, Bologna, Italy
| |
Collapse
|
4
|
Baschieri A, Mazzoni R, Cesari C, Zacchini S, Pecorari D, Sambri L. Ruthenium (0) Complexes with NHC Tetrazolylidene Ligands: Synthesis, Characterization and Reactivity. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
5
|
Messori A, Gagliardi A, Cesari C, Calcagno F, Tabanelli T, Cavani F, Mazzoni R. Advances in the homogeneous catalyzed alcohols homologation: the mild side of the Guerbet reaction. A mini-review. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
6
|
The Selective Ethanol Guerbet Condensation over Alkali Metal-Doped Sepiolite. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
7
|
Cingolani A, Olivieri D, Messori A, Cesari C, Zanotti V, Zacchini S, Gualandi I, Scavetta E, Mariani F, Tonelli D, Mazzoni R. Electrochemical Polymerisation of Newly Synthesised 3,4-Ethylene Dioxythiophene-N-Heterocyclic Carbene Iron Complexes and Application as Redox Mediators. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
Messori A, Fasolini A, Mazzoni R. Advances in Catalytic Routes for the Homogeneous Green Conversion of the Bio-Based Platform 5-Hydroxymethylfurfural. CHEMSUSCHEM 2022; 15:e202200228. [PMID: 35385607 PMCID: PMC9401906 DOI: 10.1002/cssc.202200228] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/01/2022] [Indexed: 06/14/2023]
Abstract
5-Hydroxymethylfufural (HMF) is an intriguing platform molecule that can be obtained from biomasses and that can lead to the production of a wide range of products, intermediates, or monomers. The presence of different moieties in HMF (hydroxy, aldehyde, furan ring) allows to carry out different transformations such as selective oxidations and hydrogenations, reductive aminations, etherifications, decarbonylations, and acetalizations. This is a great chance in a biorefinery perspective but requires the development of active and highly selective catalysts. In this view, homogeneous catalysis can lead to efficient conversion of HMF at mild reaction conditions. This Review discussed the recent achievements in homogeneous catalysts development and application to HMF transformations. The effects of metal nature, ligands, solvents, and reaction conditions were reported and critically reviewed. Current issues and future chances have been presented to drive future studies toward more efficient and scalable processes.
Collapse
Affiliation(s)
- Alessandro Messori
- Department of Industrial Chemistry “Toso Montanari”University of BolognaViale Risorgimento, 440136BolognaItaly
- Center for Chemical Catalysis – C3University of BolognaViale Risorgimento, 440136BolognaItaly
| | - Andrea Fasolini
- Department of Industrial Chemistry “Toso Montanari”University of BolognaViale Risorgimento, 440136BolognaItaly
- Center for Chemical Catalysis – C3University of BolognaViale Risorgimento, 440136BolognaItaly
| | - Rita Mazzoni
- Department of Industrial Chemistry “Toso Montanari”University of BolognaViale Risorgimento, 440136BolognaItaly
- Center for Chemical Catalysis – C3University of BolognaViale Risorgimento, 440136BolognaItaly
| |
Collapse
|
9
|
Davies AM, Li ZY, Stephenson CRJ, Szymczak NK. Valorization of Ethanol: Ruthenium-Catalyzed Guerbet and Sequential Functionalization Processes. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alex M. Davies
- University of Michigan, 930 N. University, Ann Arbor, Michigan 48109, United States
| | - Zhong-Yuan Li
- University of Michigan, 930 N. University, Ann Arbor, Michigan 48109, United States
| | | | | |
Collapse
|