1
|
Jiang Y, Chen CJ, Li K, Cui LP, Chen JJ. Polyoxometalates for the catalytic reduction of nitrogen oxide and its derivatives: from novel structures to functional applications. Chem Commun (Camb) 2025; 61:4881-4896. [PMID: 40062997 DOI: 10.1039/d5cc00632e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Nitrogen oxide and its derivatives, including nitroaromatic hydrocarbons and various other nitro compounds, are commonly used in industrial applications such as synthesizing drugs, dyes, pesticides, and explosives. However, these compounds are also highly toxic to the environment. Their long-term accumulation can significantly affect air and water quality and disrupt ecosystems. Thus, efficiently converting these harmful compounds into more valuable products through catalytic processes is an urgent challenge in chemical catalysis. In this regard, polyoxometalates (POMs) have emerged as promising inorganic molecular catalysts for the reduction of nitrogen oxide and its derivatives. Their unique structure, excellent redox properties, and versatile catalytic abilities contribute to their effectiveness. This review provides an overview of recent advancements in the POM-catalyzed reduction of nitrogen oxide and its derivatives, focusing on reducing nitroaromatic hydrocarbons and nitrogen oxides. Additionally, we discuss the reaction mechanisms involved in the catalytic process, explore the potential of POMs' structural features for the rational design and optimization of catalytic performance, and highlight future directions for developing POM-based catalysts.
Collapse
Affiliation(s)
- Yuan Jiang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Material of Fujian Province (IKKEM), Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China.
| | - Chun-Jun Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Material of Fujian Province (IKKEM), Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China.
| | - Ke Li
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Material of Fujian Province (IKKEM), Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China.
| | - Li-Ping Cui
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Material of Fujian Province (IKKEM), Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China.
| | - Jia-Jia Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Material of Fujian Province (IKKEM), Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China.
| |
Collapse
|
2
|
Ferreira MP, Castro CB, Honorato J, He S, Gonçalves Guimarães Júnior W, Esmieu C, Castellano EE, de Moura AF, Truzzi DR, Nascimento OR, Simonneau A, Marques Netto CGC. Biomimetic catalysis of nitrite reductase enzyme using copper complexes in chemical and electrochemical reduction of nitrite. Dalton Trans 2023; 52:11254-11264. [PMID: 37526523 DOI: 10.1039/d3dt01091k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Copper nitrite reductase mimetics were synthesized using three new tridentate ligands sharing the same N,N,N motif of coordination. The ligands were based on L-proline modifications, attaching a pyridine and a triazole to the pyrrolidine ring, and differ by a pendant group (R = phenyl, n-butyl and n-propan-1-ol). All complexes coordinate nitrite, as evidenced by cyclic voltammetry, UV-Vis, FTIR and electron paramagnetic resonance (EPR) spectroscopies. The coordination mode of nitrite was assigned by FTIR and EPR as κ2O chelate mode. Upon acidification, EPR experiments indicated a shift from chelate to monodentate κO mode, and 15N NMR experiments of a Zn2+ analogue, suggested that the related Cu(II) nitrous acid complex may be reasonably stable in solution, but in equilibrium with free HONO under non catalytic conditions. Reduction of nitrite to NO was performed both chemically and electrocatalytically, observing the highest catalytic activities for the complex with n-propan-1-ol as pendant group. These results support the hypothesis that a hydrogen bond moiety in the secondary coordination sphere may aid the protonation step.
Collapse
Affiliation(s)
- Millena P Ferreira
- Department of Chemistry, Universidade Federal de São Carlos (UFSCar), Rod. Washington Luiz, km 235 s/n, CEP 13565905 São Carlos, SP, Brazil.
| | - Caio B Castro
- Department of Chemistry, Universidade Federal de São Carlos (UFSCar), Rod. Washington Luiz, km 235 s/n, CEP 13565905 São Carlos, SP, Brazil.
| | - João Honorato
- Insitututo de Química, Departamento de Bioquímica, Universidade de São Paulo (USP), Av. Prof. Dr. Lineu Prestes, 748, CEP 05513-970 São Paulo, SP, Brazil
- Instituto de Física, Universidade de São Paulo (USP), Av.João Dagnone, 1100, CEP 13563-120, São Carlos, SP, Brazil
| | - Sheng He
- Department of Chemistry, Emory University, 1515 Dickey Drive, 30322 Atlanta, GA, USA
| | - Walber Gonçalves Guimarães Júnior
- Department of Chemistry, Universidade Federal de São Carlos (UFSCar), Rod. Washington Luiz, km 235 s/n, CEP 13565905 São Carlos, SP, Brazil.
| | - Charlene Esmieu
- LCC-CNRS, Universite de Toulouse, CNRS, UPS, 205 route de Narbonne, F31077 Toulouse cedex 4, France
| | - Eduardo E Castellano
- Instituto de Física, Universidade de São Paulo (USP), Av.João Dagnone, 1100, CEP 13563-120, São Carlos, SP, Brazil
| | - André F de Moura
- Department of Chemistry, Universidade Federal de São Carlos (UFSCar), Rod. Washington Luiz, km 235 s/n, CEP 13565905 São Carlos, SP, Brazil.
| | - Daniela R Truzzi
- Insitututo de Química, Departamento de Bioquímica, Universidade de São Paulo (USP), Av. Prof. Dr. Lineu Prestes, 748, CEP 05513-970 São Paulo, SP, Brazil
| | - Otaciro R Nascimento
- Instituto de Física, Universidade de São Paulo (USP), Av.João Dagnone, 1100, CEP 13563-120, São Carlos, SP, Brazil
| | - Antoine Simonneau
- LCC-CNRS, Universite de Toulouse, CNRS, UPS, 205 route de Narbonne, F31077 Toulouse cedex 4, France
| | - Caterina G C Marques Netto
- Department of Chemistry, Universidade Federal de São Carlos (UFSCar), Rod. Washington Luiz, km 235 s/n, CEP 13565905 São Carlos, SP, Brazil.
- Department of Chemistry, Emory University, 1515 Dickey Drive, 30322 Atlanta, GA, USA
| |
Collapse
|
3
|
Yeon S, Lee SJ, Kim J, Begildayeva T, Min A, Theerthagiri J, Kumari MLA, Pinto LMC, Kong H, Choi MY. Sustainable removal of nitrite waste to value-added ammonia on Cu@Cu 2O core-shell nanostructures by pulsed laser technique. ENVIRONMENTAL RESEARCH 2022; 215:114154. [PMID: 36037916 DOI: 10.1016/j.envres.2022.114154] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
The biochemical reduction of nitrite (NO2-) ions to ammonia (NH3) requires six electrons and is catalyzed by the cytochrome c NO2- reductase enzyme. This biological reaction inspired scientists to explore the reduction of nitrogen oxyanions, such as nitrate (NO3-) and NO2- in wastewater, to produce the more valuable NH3 product. It is widely known that copper (Cu)-based nanoparticles (NPs) are selective for the NO3- reduction reaction (NO3-RR), but the NO2-RR has not been well explored. Therefore, we attempted to address the electrocatalytic conversion of NO2- to NH3 using Cu@Cu2O core-shell NPs to simultaneously treat wastewater by removing NO2- and producing valuable NH3. The Cu@Cu2O core-shell NPs were constructed using the pulsed laser ablation of Cu sheet metal in water. The core-shell nanostructure of these particles was confirmed by various characterization techniques. Subsequently, the removal of NO2- and the ammonium (NH4+)-N yield rate were estimated using the Griess and indophenol blue methods, respectively. Impressively, the Cu@Cu2O core-shell NPs exhibited outstanding NO2-RR activity, demonstrating a maximum NO2- removal efficiency of approximately 94% and a high NH4+-N yield rate of approximately 0.03 mmol h-1.cm-2 at -1.6 V vs. a silver/silver chloride reference electrode under optimal conditions. The proposed NO2-RR mechanism revealed that the (111) facet of Cu favors the selective conversion of NO2- to NH3 via a six-electron transfer. This investigation may offer a new insight for the rational design and detailed mechanistic understanding of electrocatalyst architecture for the effective conversion of NO2- to NH4+.
Collapse
Affiliation(s)
- Sanghun Yeon
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Seung Jun Lee
- Core-Facility Center for Photochemistry & Nanomaterials, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Jiwon Kim
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Talshyn Begildayeva
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Ahreum Min
- Core-Facility Center for Photochemistry & Nanomaterials, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Jayaraman Theerthagiri
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - M L Aruna Kumari
- Department of Chemistry, The Oxford College of Science, Bengaluru, 560102, Karnataka, India
| | - Leandro M C Pinto
- Institute of Chemistry, Universidade Federal de Mato Grosso Do Sul, UFMS, 79074-460, Campo Grande, MS, Brazil
| | - Hoyoul Kong
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Myong Yong Choi
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea; Core-Facility Center for Photochemistry & Nanomaterials, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|