1
|
Kusy R, Grela K. Renaissance in Alkyne Semihydrogenation: Mechanism, Selectivity, Functional Group Tolerance, and Applications in Organic Synthesis. Chem Rev 2025; 125:4397-4527. [PMID: 40279298 DOI: 10.1021/acs.chemrev.4c00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
Alkenes constitute a significant class of chemical compounds with applications in the bulk, pharmaceutical, or perfume industry. Among the known methods of olefin production, semihydrogenation of the C-C triple bond seems to be the most straightforward one. Nonetheless, the success of this reaction requires full control over diastereoselectivity, eradication of a parasitic process of over-reduction or migration of the C-C double bond formed, and achieving satisfactory functional-group compatibility. The review demonstrates developments in the field of alkyne semihydrogenation over the period 2010-2022, with selected papers published in 2023 and 2024, emphasizing solutions to the above-mentioned limitations. We discuss mechanistic aspects of this transformation, including those related to unconventional systems. The review includes examples of applications of alkyne semihydrogenation in organic synthesis, confirming the considerable utility of this process. Finally, strategies to enhance catalyst selectivity are summarized. For the reader's convenience, we provided a graphical guidebook to catalytic systems, illustrating the efficiency of the particular method.
Collapse
Affiliation(s)
- Rafał Kusy
- Leibniz-Institute for Catalysis, Albert-Einstein-Street 29a, 18059 Rostock, Germany
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Karol Grela
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Biological and Chemical Research Centre, Faculty of Chemistry University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| |
Collapse
|
2
|
Shen C, Wang Y, Yao J, Li F, Mei F, Zhang Z, Lu H, Guo X, Peng L, Xue N, Zhu Y, Chen Z, Ding W. Bio-Inspired Self-Activating Polydimethylsiloxane-Modified CrO x/Al 2O 3 Catalyst for Acetylene Semihydrogenation. Angew Chem Int Ed Engl 2025:e202504399. [PMID: 40178265 DOI: 10.1002/anie.202504399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 03/29/2025] [Accepted: 03/30/2025] [Indexed: 04/05/2025]
Abstract
Biomimetic approach is a nature-driven strategy for designing functional materials to meet the industrial challenges. Here we demonstrate the bio-inspired discovery of a self-activating catalyst, with polydimethylsiloxane anchored over the surface of CrOx/Al2O3, exhibiting comparable performance with noble metallic catalysts for acetylene semihydrogenation. In addition, the dynamic movement of polymer chains with high flexibility renders the catalyst to impose proactive perturbation to the undesired coke precursors generated in reaction, analogous to the function of hair-like cilia on the surface of respiratory epithelial cells, thus avoiding the site-blocking induced by carbonaceous deposits and sustaining the catalyst stable for 1000 h without any deactivation. This study paves the way to develop other heterogeneous catalysts with high efficiency and durability via mimicking the innate defense mechanism of natural organisms.
Collapse
Affiliation(s)
- Chenyang Shen
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yibo Wang
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jun Yao
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Fengfeng Li
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Feifei Mei
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zhewei Zhang
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Huili Lu
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xuefeng Guo
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Luming Peng
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Nianhua Xue
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yan Zhu
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zhaoxu Chen
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Weiping Ding
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
3
|
Wu W, Li N, Che C, Zhao J, Qin J, Feng Z, Song J, Zhang Z, Zhang R, Long Y. Zr(OH) 4-Catalyzed Semi-Hydrogenation of Phenylacetylene with Terminal Zr-O-H as Active Site: Inactive for Free Styrene. Angew Chem Int Ed Engl 2024; 63:e202410246. [PMID: 39046089 DOI: 10.1002/anie.202410246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 07/25/2024]
Abstract
In the field of industrial semi-hydrogenation of trace alkynes amidst alkene feedstocks, the pivotal challenge lies in circumventing the hydrogenation of alkenes. Herein, we present Zr(OH)4 as an innovative catalyst for the semi-hydrogenation of phenylacetylene, demonstrating remarkable selectivity towards styrene (>96 %), while exhibiting inactivity towards free styrene. Notably, Zr(OH)4 achieves a 95 % conversion of quasi-industry 1 mol % phenylacetylene within styrene, with a mere 0.44 % styrene loss. Experimental and theoretical results confirm both terminal Zr-O-H and bridge Zr-O-H can dissociate H2, while the terminal Zr-O-H plays a crucial role on activating phenylacetylene through the sequential hydrogenation process of C6H5C≡CH→C6H5C=CH2→C6H5CH=CH2. The high rate of phenylacetylene removal is attributed to its strong adsorption capacity, while Zr(OH)4 has a significantly weaker adsorption capacity for styrene.
Collapse
Affiliation(s)
- Wenxiang Wu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), the Key Laboratory of Catalytic Engineering of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Na Li
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Chunxia Che
- Lanzhou Petrochemical Research Center, Petrochemical Research Institute, PetroChina, Lanzhou, 730060, P. R. China
| | - Jinping Zhao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), the Key Laboratory of Catalytic Engineering of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Jiaheng Qin
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), the Key Laboratory of Catalytic Engineering of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Zihan Feng
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), the Key Laboratory of Catalytic Engineering of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Jie Song
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), the Key Laboratory of Catalytic Engineering of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Zinan Zhang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), the Key Laboratory of Catalytic Engineering of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Riguang Zhang
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Yu Long
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), the Key Laboratory of Catalytic Engineering of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| |
Collapse
|
4
|
Zhou S, Zeng A, Lu C, Wang M, Zhou C, Li Q, Dong L, Wang A, Tan L. Bi-modified Cu-Based Catalysts for Acetylene Hydrogenation: Leveraging Dispersion and Hydrogen Spillover. Inorg Chem 2024; 63:11802-11811. [PMID: 38861686 DOI: 10.1021/acs.inorgchem.4c01492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Removing trace acetylene from the ethylene stream through selective hydrogenation is a crucial process in the production of polymer-grade ethylene. However, achieving high selectivity while maintaining high activity remains a significant challenge, especially for nonprecious metal catalysts. Herein, the trade-off between activity and selectivity is solved by synergizing enhanced dispersion and hydrogen spillover. Specifically, a bubbling method is proposed for preparing SiO2-supported copper and/or bismuth carbonate with high dispersion, which is then employed to synthesize highly dispersed Bi-modified CuxC-Cu catalyst. The catalyst displays outstanding catalytic performance for acetylene selective hydrogenation, achieving acetylene conversion of 100% and ethylene selectivity of 91.1% at 100 °C. The high activity originates from the enhanced dispersion, and the exceptional selectivity is due to the enhanced spillover capacity of active hydrogen from CuxC to Cu, which is promoted by the Bi addition. The results offer an avenue to design efficient catalysts for selective hydrogenation from nonprecious metals.
Collapse
Affiliation(s)
- Shihong Zhou
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China
| | - Aonan Zeng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Chenyang Lu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China
| | - Mengxin Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China
| | - Cailong Zhou
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China
| | - Qun Li
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China
| | - Lichun Dong
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China
| | - Anjie Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Luxi Tan
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China
| |
Collapse
|
5
|
Yu XY, Huang ZQ, Ban T, Xu YH, Liu ZW, Chang CR. Finding Natural, Dense, and Stable Frustrated Lewis Pairs on Wurtzite Crystal Surfaces for Small-Molecule Activation. Angew Chem Int Ed Engl 2024; 63:e202405405. [PMID: 38578834 DOI: 10.1002/anie.202405405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/07/2024]
Abstract
The surface frustrated Lewis pairs (SFLPs) open up new opportunities for substituting noble metals in the activation and conversion of stable molecules. However, the applications of SFLPs on a larger scale are impeded by the complex construction process, low surface density, and sensitivity to the reaction environment. Herein, wurtzite-structured crystals such as GaN, ZnO, and AlP are found for developing natural, dense, and stable SFLPs. It is revealed that the SFLPs can naturally exist on the (100) and (110) surfaces of wurtzite-structured crystals. All the surface cations and anions serve as the Lewis acid and Lewis base in SFLPs, respectively, contributing to the surface density of SFLPs as high as 7.26×1014 cm-2. Ab initio molecular dynamics simulations indicate that the SFLPs can keep stable under high temperatures and the reaction atmospheres of CO and H2O. Moreover, outstanding performance for activating the given small molecules is achieved on these natural SFLPs, which originates from the optimal orbital overlap between SFLPs and small molecules. Overall, these findings not only provide a simple method to obtain dense and stable SFLPs but also unfold the nature of SFLPs toward the facile activation of small molecules.
Collapse
Affiliation(s)
- Xi-Yang Yu
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zheng-Qing Huang
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Tao Ban
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yun-Hua Xu
- Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, School of Chemistry and Chemical Engineering, Yulin University, Yulin, 719000, China
| | - Zhong-Wen Liu
- Key Laboratory of Syngas Conversion of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Chun-Ran Chang
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, School of Chemistry and Chemical Engineering, Yulin University, Yulin, 719000, China
| |
Collapse
|
6
|
Ge X, Yin J, Ren Z, Yan K, Jing Y, Cao Y, Fei N, Liu X, Wang X, Zhou X, Chen L, Yuan W, Duan X. Atomic Design of Alkyne Semihydrogenation Catalysts via Active Learning. J Am Chem Soc 2024; 146:4993-5004. [PMID: 38333965 DOI: 10.1021/jacs.3c14495] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Alkyne hydrogenation on palladium-based catalysts modified with silver is currently used in industry to eliminate trace amounts of alkynes in alkenes produced from steam cracking and alkane dehydrogenation processes. Intensive efforts have been devoted to designing an alternative catalyst for improvement, especially in terms of selectivity and catalyst cost, which is still far away from that as expected. Here, we describe an atomic design of a high-performance Ni-based intermetallic catalyst aided by active machine learning combined with density functional theory calculations. The engineered NiIn catalyst exhibits >97% selectivity to ethylene and propylene at the full conversion of acetylene and propyne at mild temperature, outperforming the reported Ni-based catalysts and even noble Pd-based ones. Detailed mechanistic studies using theoretical calculations and advanced characterizations elucidate that the atomic-level defined coordination environment of Ni sites and well-designed hybridization of Ni 3d with In 5p orbital determine the semihydrogenation pathway.
Collapse
Affiliation(s)
- Xiaohu Ge
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jun Yin
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Zhouhong Ren
- School of Chemistry and Chemical Engineering, In-situ Center for Physical Sciences, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kelin Yan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yundao Jing
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yueqiang Cao
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Nina Fei
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xi Liu
- School of Chemistry and Chemical Engineering, In-situ Center for Physical Sciences, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaonan Wang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Xinggui Zhou
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Liwei Chen
- School of Chemistry and Chemical Engineering, In-situ Center for Physical Sciences, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Weikang Yuan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xuezhi Duan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
7
|
Li Y, Fei N, Li W, Cao Y, Ge X, Dai S, Yan K, Yuwen Q, Zhou X, Yuan W, Duan X. H2 activation on metal oxides promoted by highly dispersed Pd. CATAL COMMUN 2023. [DOI: 10.1016/j.catcom.2023.106645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
|
8
|
Mechanistic and Kinetics Insights into Structure Sensitivity of 2,6-Diamino-3,5-Dinitropiridine Hydrogenation over Ni Catalysts. J Catal 2023. [DOI: 10.1016/j.jcat.2023.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
9
|
Mao S, Wang Z, Luo Q, Lu B, Wang Y. Geometric and Electronic Effects in Hydrogenation Reactions. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Shanjun Mao
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou310028, People’s Republic of China
| | - Zhe Wang
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou310028, People’s Republic of China
| | - Qian Luo
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou310028, People’s Republic of China
| | - Bing Lu
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou310028, People’s Republic of China
| | - Yong Wang
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou310028, People’s Republic of China
| |
Collapse
|
10
|
Li Y, Yan K, Cao Y, Ge X, Zhou X, Yuan W, Chen D, Duan X. Mechanistic and Atomic-Level Insights into Semihydrogenation Catalysis to Light Olefins. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yurou Li
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kelin Yan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yueqiang Cao
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaohu Ge
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xinggui Zhou
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weikang Yuan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - De Chen
- Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Xuezhi Duan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|