1
|
Kusy R, Grela K. Renaissance in Alkyne Semihydrogenation: Mechanism, Selectivity, Functional Group Tolerance, and Applications in Organic Synthesis. Chem Rev 2025; 125:4397-4527. [PMID: 40279298 DOI: 10.1021/acs.chemrev.4c00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
Alkenes constitute a significant class of chemical compounds with applications in the bulk, pharmaceutical, or perfume industry. Among the known methods of olefin production, semihydrogenation of the C-C triple bond seems to be the most straightforward one. Nonetheless, the success of this reaction requires full control over diastereoselectivity, eradication of a parasitic process of over-reduction or migration of the C-C double bond formed, and achieving satisfactory functional-group compatibility. The review demonstrates developments in the field of alkyne semihydrogenation over the period 2010-2022, with selected papers published in 2023 and 2024, emphasizing solutions to the above-mentioned limitations. We discuss mechanistic aspects of this transformation, including those related to unconventional systems. The review includes examples of applications of alkyne semihydrogenation in organic synthesis, confirming the considerable utility of this process. Finally, strategies to enhance catalyst selectivity are summarized. For the reader's convenience, we provided a graphical guidebook to catalytic systems, illustrating the efficiency of the particular method.
Collapse
Affiliation(s)
- Rafał Kusy
- Leibniz-Institute for Catalysis, Albert-Einstein-Street 29a, 18059 Rostock, Germany
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Karol Grela
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Biological and Chemical Research Centre, Faculty of Chemistry University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| |
Collapse
|
2
|
He Y, Fang W, Tang R, Liu Z. Controllable Polymerization of Inorganic Ionic Oligomers for Precise Nanostructural Construction in Materials. ACS NANO 2025; 19:6648-6662. [PMID: 39936481 DOI: 10.1021/acsnano.4c18704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
The rational design of nanostructures is critical for achieving high-performance materials. The close-packing behavior of inorganic ions and their less controllable nucleation process impede the precise nanostructural construction of inorganic ionic compounds. The discovery of inorganic ionic oligomers (stable molecular-scale inorganic ionic compounds) and their polymerization reaction enables the controllable arrangement of inorganic ions for diverse nanostructures. This perspective aims to introduce inorganic ionic oligomers and their currently identified advantages in the precise design of inorganic and organic-inorganic hybrid nanostructures, directing the development of advanced materials with applications across the mechanical, energy, environmental, and biomedical fields. The challenges and opportunities for the controllable polymerization of inorganic ionic oligomers are presented at the end of this perspective. We suggest that inorganic ionic oligomers and their polymerization reaction offer a promising strategy for the preparation of inorganic and organic-inorganic hybrid materials.
Collapse
Affiliation(s)
- Yan He
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Weifeng Fang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Ruikang Tang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Zhaoming Liu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
3
|
An Y, Hao G, Wang X, Zhou L, Wu M, Ma J, Chou LY. Inherent CeO 2 Pore Structure Confined Pd for the Catalytic Performance Regulation. ACS APPLIED MATERIALS & INTERFACES 2025; 17:9342-9350. [PMID: 39879576 DOI: 10.1021/acsami.4c19940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
In this study, we synthesized CeO2 possessing an open pore structure and verified its structural differences compared to CeO2 lacking such an open pore structure. Using these two CeO2 samples as catalyst supports and loading them with Pd metals, a series of characterizations were carried out on the resultant catalysts to analyze their structures and properties meticulously. We have elucidated the influence of the open pore structure on the loading position of Pd. Hydrogenation reactions involving alkynes and alkenes were employed to confirm the existence of steric hindrance effects caused by the pore structure differences. Furthermore, we applied these catalysts to more valuable industrial reaction systems, demonstrating that the unique pore structures of directly synthesized CeO2 can also exhibit excellent performance in practical applications.
Collapse
Affiliation(s)
- Yuanyuan An
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Guoxiu Hao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xinyue Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Li Zhou
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Mengyao Wu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jialong Ma
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Lien-Yang Chou
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
4
|
Comes J, Islamovic E, Lizandara-Pueyo C, Seto J. Improvements in the utilization of calcium carbonate in promoting sustainability and environmental health. Front Chem 2024; 12:1472284. [PMID: 39421606 PMCID: PMC11484102 DOI: 10.3389/fchem.2024.1472284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Calcium carbonate (CaCO3) is an incredibly abundant mineral on Earth, with over 90% of it being found in the lithosphere. To address the CO2 crisis and combat ocean acidification, it is essential to produce more CaCO3 using various synthetic methods. Additionally, this approach can serve as a substitute for energy-intensive processes like cement production. By doing so, we have the potential to not only reverse the damage caused by climate change but also protect biological ecosystems and the overall environment. The key lies in maximizing the utilization of CaCO3 in various human activities, paving the way for a more sustainable future for our planet.
Collapse
Affiliation(s)
- Jackson Comes
- School for the Engineering of Matter, Transport, and Energy, Center for Biological Physics, Arizona State University, Tempe, AZ, United States
| | | | | | - Jong Seto
- School for the Engineering of Matter, Transport, and Energy, Center for Biological Physics, Arizona State University, Tempe, AZ, United States
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
5
|
Li J, Suo W, Huang Y, Chen M, Ma H, Liu C, Zhang H, Liang K, Dong Z. Mesoporous α-Al 2O 3-supported PdCu bimetallic nanoparticle catalyst for the selective semi-hydrogenation of alkynes. J Colloid Interface Sci 2023; 652:1053-1062. [PMID: 37639927 DOI: 10.1016/j.jcis.2023.08.076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/02/2023] [Accepted: 08/11/2023] [Indexed: 08/31/2023]
Abstract
The selective hydrogenation of alkynes to alkenes is widely applied in the chemical industry; nevertheless, achieving highly selective hydrogenation with high catalytic activity is considerably challenging. Herein, ultrafine PdCu bimetallic nanoparticles encapsulated by high-surface-area mesoporous α-Al2O3 were prepared by high-temperature calcination-reduction using a porous organic framework (POF) as the template. As-obtained PdCu@α-Al2O3 exhibited a high selectivity of 95% for the semi-hydrogenation of phenylacetylene as a probe reaction under mild reaction conditions. The separation of continuous Pd atoms and modification of the Pd electronic state by Cu atoms suppressed β-hydride formation and alkene adsorption, contributing to high selectivity for the catalytic hydrogenation of alkynes. The catalytic activity was maintained after 7 cycles due to the strong interaction between the PdCu bimetallic nanoparticles and α-Al2O3 as well as the encapsulation effect of mesoporous α-Al2O3. Thus, the current work provides a facile strategy for fabricating high-surface-area mesoporous α-Al2O3-supported catalysts for industrial catalysis applications.
Collapse
Affiliation(s)
- Jianfeng Li
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Wenli Suo
- Lanzhou Petrochemical Company, PetroChina Company Limited, Lanzhou 730060, PR China
| | - Yuena Huang
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Minglin Chen
- Lanzhou Petrochemical Research Center, Petrochemical Research Institute, PetroChina Company Limited, Lanzhou 730060, PR China
| | - Haowen Ma
- Lanzhou Petrochemical Research Center, Petrochemical Research Institute, PetroChina Company Limited, Lanzhou 730060, PR China
| | - Chuang Liu
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Huan Zhang
- Lanzhou Petrochemical Company, PetroChina Company Limited, Lanzhou 730060, PR China
| | - Kun Liang
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China.
| | - Zhengping Dong
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
6
|
Ballesteros-Soberanas J, Mon M, Leyva-Pérez A. Diastereoisomeric enrichment of 1,4-enediols and H 2-splitting inhibition on Pd-supported catalysts. Org Biomol Chem 2023; 21:7136-7140. [PMID: 37608648 DOI: 10.1039/d3ob01025b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Pd-supported catalysts are fundamental tools in organic reactions involving H2 splitting. Here we show that 1,4-enediols enriched in one diastereoisomer are produced from the classical Pd-catalyzed semi-hydrogenation reaction with H2, starting from the corresponding, widely available 1,4-diacetylenic diols. The semi-hydrogenation reaction proceeds concomitantly with the desymmetrization of the meso/racemic form of the enediol. We also show that these products, if added in advance to H2, completely inactivate the Pd catalyst (only when added before H2). These results provide a simple way not only to produce 1,4-enediols enriched in one diastereoisomer by a classical catalytic method but also to stop H2 dissociation on Pd nanoparticles.
Collapse
Affiliation(s)
- Jordi Ballesteros-Soberanas
- Instituto de Tecnología Química (UPV-CSIC), Universidad Politècnica de València-Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, 46022 Valencia, Spain.
| | - Marta Mon
- Instituto de Tecnología Química (UPV-CSIC), Universidad Politècnica de València-Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, 46022 Valencia, Spain.
| | - Antonio Leyva-Pérez
- Instituto de Tecnología Química (UPV-CSIC), Universidad Politècnica de València-Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, 46022 Valencia, Spain.
| |
Collapse
|
7
|
Cely-Pinto M, Wang B, Scaiano JC. Photocatalytic Semi-Hydrogenation of Alkynes: A Game of Kinetics, Selectivity and Critical Timing. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2390. [PMID: 37686898 PMCID: PMC10490202 DOI: 10.3390/nano13172390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/12/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023]
Abstract
The semi-hydrogenation reaction of alkynes is important in the fine chemicals and pharmaceutical industries, and it is thus important to find catalytic processes that will drive the reaction efficiently and at a low cost. The real challenge is to drive the alkyne-to-alkene reaction while avoiding over-hydrogenation to the saturated alkane moiety. The problem is more difficult when dealing with aromatic substitution at the alkyne center. Simple photocatalysts based on Palladium tend to proceed to the alkane, and stopping at the alkene with good selectivity requires very precise timing with basically no timing tolerance. We report here that the goal of high conversion with high selectivity could be achieved with TiO2-supported copper (Cu@TiO2), although with slower kinetics than for Pd@TiO2. A novel bimetallic catalyst, namely, CuPd@TiO2 (0.8% Cu and 0.05% Pd), with methanol as the hydrogen source could improve the kinetics by 50% with respect to Cu@TiO2, while achieving selectivities over 95% and with exceptional timing tolerance. Further, the low Palladium content minimizes its use, as Palladium is regarded as an element at risk of depletion.
Collapse
Affiliation(s)
| | | | - Juan C. Scaiano
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (M.C.-P.); (B.W.)
| |
Collapse
|
8
|
Zhang B, Zhu Y, Shi S, Li Y, Luo Y, Huang Z, Xiao W, Wang S, Zhang P, Shu Y, Chen C. Embedding Hierarchical Pores by Mechanochemistry in Carbonates with Superior Chemoselective Catalysis and Stability. Inorg Chem 2023; 62:12920-12930. [PMID: 37523448 DOI: 10.1021/acs.inorgchem.3c01648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Hierarchical porosity of carbonates can facilitate their performance in massive applications as compared to their corresponding bulk samples. Traditional solution-based precipitation is typically utilized to fabricate porous carbonates. However, this tactic is generally employed under humid conditions, which demand soluble metal precursors, solvents, and extended dry periods. A salt-assisted mechanochemistry is exploited in contemporary work to settle the shortcomings. Enlighted by solid-state technology, this approach eliminates the utilization of solvents, and the process of ball milling can create pores in 5 min. A range of highly porous carbonates and their derivatives are acquired, with several materials surpassing recording surface areas (e.g., H-CaCO3: 108 m2/g, SrCO3: 125 m2/g, BaCO3: 172 m2/g, Pd/H-CaCO3 catalyst: 101 m2/g). The results display that Pd/H-CaCO3 shows superior catalytic efficiency in the synthesis of aniline (turnover frequency [TON] = 1.33 × 104/h-1, yield ≥ 99%, and recycle stability: 11 cycles) and dye degradation. Combining mechanochemistry and salt-assisted tactic provides a facile and efficient pathway for processing porous materials.
Collapse
Affiliation(s)
- Bingzhen Zhang
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Yahui Zhu
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Shunli Shi
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Ying Li
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Yanping Luo
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Zhixin Huang
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Weiming Xiao
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Shuhua Wang
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Pengfei Zhang
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yuan Shu
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China
| | - Chao Chen
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| |
Collapse
|
9
|
Schiferle EB, Ge W, Reinhard BM. Nanoplastics Weathering and Polycyclic Aromatic Hydrocarbon Mobilization. ACS NANO 2023; 17:5773-5784. [PMID: 36881519 DOI: 10.1021/acsnano.2c12224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Despite increasing efforts to recycle plastic materials, large quantities of plastics waste continue to accumulate in the oceans. Persistent mechanical and photochemical degradation of plastics in the oceans yields micro- and nanoscale plastic particles, which represent potential vectors for mobilizing hydrophobic carcinogens in an aqueous milieu. Yet, the fate and potential threats associated with plastics remain largely unexplored. Herein, we apply an accelerated weathering protocol to consumer plastics to characterize the effect of photochemical weathering on the size, morphology, and chemical composition of nanoplastics under defined conditions and validate that the photochemical degradation is consistent with plastics harvested from the Pacific Ocean. Machine learning algorithms trained with accelerated weathering data successfully classify weathered plastics from nature. We demonstrate that photodegradation of poly(ethylene terephthalate) (PET)-containing plastics produces enough CO2 to induce a mineralization process that results in the deposition of CaCO3 on nanoplastics. Finally, we determine that despite UV-radiation induced photochemical degradation and mineral deposition, nanoplastics retain their ability to sorb, mobilize, and increase bioaccessibility of polycyclic aromatic hydrocarbons (PAHs) in water and under simulated physiological gastric and intestinal conditions.
Collapse
|
10
|
Tripodal Pd metallenes mediated by Nb 2C MXenes for boosting alkynes semihydrogenation. Nat Commun 2023; 14:661. [PMID: 36750563 PMCID: PMC9905561 DOI: 10.1038/s41467-023-36378-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
2D metallene nanomaterials have spurred considerable attention in heterogeneous catalysis by virtue of sufficient unsaturated metal atoms, high specific surface area and surface strain. Nevertheless, the strong metallic bonding in nanoparticles aggravates the difficulty in the controllable regulation of the geometry of metallenes. Here we propose an efficient galvanic replacement strategy to construct Pd metallenes loaded on Nb2C MXenes at room temperature, which is triggered by strong metal-support interaction based on MD simulations. The Pd metallenes feature a chair structure of six-membered ring with the coordination number of Pd as low as 3. Coverage-dependent kinetic analysis based on first-principles calculations reveals that the tripodal Pd metallenes promote the diffusion of alkene and inhibit its overhydrogenation. As a consequence, Pd/Nb2C delivers an outstanding turnover frequency of 10372 h-1 and a high selectivity of 96% at 25 oC in the semihydrogenation of alkynes without compromising the stability. This strategy is general and scalable considering the plentiful members of the MXene family, which can set a foundation for the design of novel supported-metallene catalysts for demanding transformations.
Collapse
|
11
|
Ballesteros-Soberanas J, Leyva-Pérez A. Electron-Poor Phosphines Enable the Selective Semihydrogenation Reaction of Alkynes with Pd on Carbon Catalysts. J Phys Chem Lett 2023; 14:965-970. [PMID: 36689618 PMCID: PMC9900635 DOI: 10.1021/acs.jpclett.2c03428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/20/2023] [Indexed: 06/17/2023]
Abstract
An alternative to the Lindlar catalyst for the semihydrogenation reaction of alkynes to alkenes is of high interest. Here we show that palladium on carbon (Pd/C), i.e., a widely available supported Pd catalyst, is converted from an unselective to a chemoselective catalyst during the semihydrogenation reaction of alkynes, after the addition of catalytic amounts of commercially available electron-poor phosphines. The catalytic activity is ≤7 times greater, and the selectivity is comparable to that of the industrial benchmark Lindlar catalyst.
Collapse
|
12
|
Ballesteros-Soberanas J, Carrasco JA, Leyva-Pérez A. Parts-Per-Million of Soluble Pd 0 Catalyze the Semi-Hydrogenation Reaction of Alkynes to Alkenes. J Org Chem 2023; 88:18-26. [PMID: 35584367 PMCID: PMC9830639 DOI: 10.1021/acs.joc.2c00616] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The synthesis of cis-alkenes is industrially carried out by selective semi-hydrogenation of alkynes with complex Pd catalysts, which include the Lindlar catalyst (PdPb on CaCO3) and c-Pd/TiS (colloidal ligand-protected Pd nanoparticles), among others. Here, we show that Pd0 atoms are generated from primary Pd salts (PdCl2, PdSO4, Pd(OH)2, PdO) with H2 in alcohol solutions, independently of the alkyne, to catalyze the semi-hydrogenation reaction with extraordinarily high efficiency (up to 735 s-1), yield (up to 99%), and selectivity (up to 99%). The easy-to-prepare Pd0 species hold other potential catalytic applications.
Collapse
|
13
|
Wang M, Liang L, Liu X, Sun Q, Guo M, Bai S, Xu Y. Selective Semi-Hydrogenation of Alkynes on Palladium-Selenium Nanocrystals. J Catal 2023. [DOI: 10.1016/j.jcat.2023.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
14
|
Su Y, Wang X, Lin Q, Shen Q, Xu S, Fang L, Wen X. E-Selective semi-hydrogenation of alkynes via a sulfur-radical mediation over cyclodextrin-modified nickel nanocatalyst. Catal Sci Technol 2023. [DOI: 10.1039/d2cy01984a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
An efficient cyclodextrin-modified Ni catalyst was developed for E-selective semi-hydrogenation of alkynes that takes into account for the highly active Hδ− and Hδ+, in situ formed Ni nanoparticles, and the host–guest interaction.
Collapse
Affiliation(s)
- Yatao Su
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Xiu Wang
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Qianwen Lin
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Qi Shen
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Shuangwen Xu
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Liping Fang
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Xin Wen
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| |
Collapse
|
15
|
Revisiting the Semi-Hydrogenation of Phenylacetylene to Styrene over Palladium-Lead Alloyed Catalysts on Precipitated Calcium Carbonate Supports. Catalysts 2022. [DOI: 10.3390/catal13010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The quest for improved heterogeneous catalysts often leads to sophisticated solutions, which are expensive and tricky to scale up industrially. Herein, the effort to upgrade the existing inorganic nonmetallic materials has seldom been prioritized by the catalysis community, which could deliver cost-effective solutions to upgrade the industrial catalysts catalog. With this philosophy in mind, we demonstrate in this work that alloyed palladium-lead (Pd-Pb) deposited on novel precipitated calcium carbonate (PCC) supports could be considered an upgraded version of the industrial Lindlar catalyst for the semi-hydrogenation of phenylacetylene to styrene. By utilizing PCC supports of variable surface areas (up to 60 m2/g) and alloyed Pd-Pb loading, supported by material characterization tools, we showcase that achieving the “active-site isolation” feature could be the most pivotal criterion to maximize semi-hydrogenated alkenes selectivity at the expense of prohibiting the complete hydrogenation to alkanes. The calcite phase of our PCC supports governs the ultimate catalysis, via complexation with uniformly distributed alloyed Pb, which may facilitate the desired “active-site isolation” feature to boost the selectivity to the preferential product. Through this work, we also advocate increasing research efforts on mineral-based inorganic nonmetallic materials to deliver novel and improved cost-effective catalytic systems.
Collapse
|
16
|
Garnes–Portolés F, López–Cruz C, Sánchez–Quesada J, Espinós–Ferri E, Leyva–Pérez A. Solid-catalyzed synthesis of isomers–free terpinen–4–ol. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Song X, Shao F, Zhao Z, Li X, Wei Z, Wang J. Single-Atom Ni-Modified Al 2O 3-Supported Pd for Mild-Temperature Semi-hydrogenation of Alkynes. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Xin Song
- Institute of Industrial Catalysis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou310032, P. R. China
| | - Fangjun Shao
- Institute of Industrial Catalysis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou310032, P. R. China
| | - Zijiang Zhao
- Institute of Industrial Catalysis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou310032, P. R. China
| | - Xiaonian Li
- Institute of Industrial Catalysis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou310032, P. R. China
| | - Zhongzhe Wei
- Institute of Industrial Catalysis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou310032, P. R. China
| | - Jianguo Wang
- Institute of Industrial Catalysis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou310032, P. R. China
| |
Collapse
|
18
|
Nikoshvili LZ, Popov AY, Bykov AV, Sidorov AI, Kiwi-Minsker L. Hybrid Pd-Nanoparticles within Polymeric Network in Selective Hydrogenation of Alkynols: Influence of Support Porosity. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123842. [PMID: 35744966 PMCID: PMC9228706 DOI: 10.3390/molecules27123842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/06/2022] [Accepted: 06/11/2022] [Indexed: 11/16/2022]
Abstract
This work is addressing the selective hydrogenation of alkynols over hybrid catalysts containing Pd-nanoparticles, within newly synthesized hyper-cross-linked polystyrenes (HPS). Alkynols containing C5, C10, and C20 with a terminal triple bond, which are structural analogues or direct semi-products of fragrant substances and fat-soluble vitamins, have been studied. Selective hydrogenation was carried out in a batch mode (ambient hydrogen pressure, at 90 °C, in toluene solvent), using hybrid Pd catalysts with low metal content (less than 0.2 wt.%). The microporous and mesoporous HPS were both synthesized and used as supports in order to address the influence of porosity. Synthesized catalysts were shown to be active and selective: in the case of C5, hydrogenation selectivity to the target product was more than 95%, at close to complete alkynol conversion. Mesoporous catalysts have shown some advantages in hydrogenation of long-chain alkynols.
Collapse
Affiliation(s)
- Linda Z. Nikoshvili
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, A. Nikitina Str., 22, 170026 Tver, Russia; (A.V.B.); (A.I.S.)
- Correspondence: (L.Z.N.); (L.K.-M.); Tel.: +7-904-005-7791 (L.Z.N.); +41-21-693-3182 (L.K.-M.)
| | - Alexander Y. Popov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Alexey V. Bykov
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, A. Nikitina Str., 22, 170026 Tver, Russia; (A.V.B.); (A.I.S.)
| | - Alexander I. Sidorov
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, A. Nikitina Str., 22, 170026 Tver, Russia; (A.V.B.); (A.I.S.)
| | - Lioubov Kiwi-Minsker
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, A. Nikitina Str., 22, 170026 Tver, Russia; (A.V.B.); (A.I.S.)
- Regional Technological Centre, Tver State University, Zhelyabova Str., 33, 170100 Tver, Russia
- Ecole Polytechnique Fédérale de Lausanne, GGRC-ISIC-EPFL, CH-1015 Lausanne, Switzerland
- Correspondence: (L.Z.N.); (L.K.-M.); Tel.: +7-904-005-7791 (L.Z.N.); +41-21-693-3182 (L.K.-M.)
| |
Collapse
|