1
|
Sharma D, Sajwan D, Mishra S, Gouda A, Mittal P, Choudhary P, Mishra BP, Kumar S, Krishnan V. Tailoring catalysis at the atomic level: trends and breakthroughs in single atom catalysts for organic transformation reactions. NANOSCALE HORIZONS 2025; 10:423-459. [PMID: 39635733 DOI: 10.1039/d4nh00479e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The utilization of precise materials in heterogeneous catalysis will provide various new possibilities for developing superior catalysts to tackle worldwide energy and environmental issues. In recent years, single atom catalysts (SACs) with excellent atom utilization and isolated active sites have progressed dramatically as a thriving sector of catalysis research. Additionally, SACs bridge the gap between homogeneous and heterogeneous catalysts and overcome the limitations of both categories. Current research on SACs is highly oriented towards the organic synthesis of high-significance molecules with promising potential for large-scale applicability and industrialization. In this context, this review aims to comprehensively analyze the state-of-the-art research in the synthesis of SACs and analyze their structural, electronic, and geometric properties. Moreover, the unprecedented catalytic performance of the SACs towards various organic transformation reactions is succinctly summarized with recent reports. Further, a detailed summary of the current state of the research field of SACs in organic transformation is discussed. Finally, a critical analysis of the existing challenges in this emerging field of SACs and the possible countermeasures are provided. We believe that SACs have the potential to profoundly alter the chemical industry, pushing the boundaries of catalysis in new and undiscovered territory.
Collapse
Affiliation(s)
- Devendra Sharma
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi 175075, Himachal Pradesh, India.
| | - Devanshu Sajwan
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi 175075, Himachal Pradesh, India.
| | - Shubhankar Mishra
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi 175075, Himachal Pradesh, India.
| | - Ashrumochan Gouda
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi 175075, Himachal Pradesh, India.
| | - Prerna Mittal
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi 175075, Himachal Pradesh, India.
| | - Priyanka Choudhary
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi 175075, Himachal Pradesh, India.
| | - Bhagyashree Priyadarshini Mishra
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi 175075, Himachal Pradesh, India.
| | - Sahil Kumar
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi 175075, Himachal Pradesh, India.
| | - Venkata Krishnan
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi 175075, Himachal Pradesh, India.
| |
Collapse
|
2
|
Li M, Sun G, Wang Z, Zhang X, Peng J, Jiang F, Li J, Tao S, Liu Y, Pan Y. Structural Design of Single-Atom Catalysts for Enhancing Petrochemical Catalytic Reaction Process. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313661. [PMID: 38499342 DOI: 10.1002/adma.202313661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/02/2024] [Indexed: 03/20/2024]
Abstract
Petroleum, as the "lifeblood" of industrial development, is the important energy source and raw material. The selective transformation of petroleum into high-end chemicals is of great significance, but still exists enormous challenges. Single-atom catalysts (SACs) with 100% atom utilization and homogeneous active sites, promise a broad application in petrochemical processes. Herein, the research systematically summarizes the recent research progress of SACs in petrochemical catalytic reaction, proposes the role of structural design of SACs in enhancing catalytic performance, elucidates the catalytic reaction mechanisms of SACs in the conversion of petrochemical processes, and reveals the high activity origins of SACs at the atomic scale. Finally, the key challenges are summarized and an outlook on the design, identification of active sites, and the appropriate application of artificial intelligence technology is provided for achieving scale-up application of SACs in petrochemical process.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Guangxun Sun
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Zhidong Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Xin Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jiatian Peng
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Fei Jiang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Junxi Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Shu Tao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yunqi Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yuan Pan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| |
Collapse
|
3
|
Yu Z, Zhang S, Zhang L, Liu X, Jia Z, Li L, Ta N, Wang A, Liu W, Wang A, Zhang T. Suppressing Metal Leaching and Sintering in Hydroformylation Reaction by Modulating the Coordination of Rh Single Atoms with Reactants. J Am Chem Soc 2024; 146:11955-11967. [PMID: 38640231 DOI: 10.1021/jacs.4c01315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Hydroformylation reaction is one of the largest homogeneously catalyzed industrial processes yet suffers from difficulty and high cost in catalyst separation and recovery. Heterogeneous single-atom catalysts (SACs), on the other hand, have emerged as a promising alternative due to their high initial activity and reasonable regioselectivity. Nevertheless, the stability of SACs against metal aggregation and leaching during the reaction has rarely been addressed. Herein, we elucidate the mechanism of Rh aggregation and leaching by investigating the structural evolution of Rh1@silicalite-1 SAC in response to different adsorbates (CO, H2, alkene, and aldehydes) by using diffuse reflectance infrared Fourier transform spectroscopy, X-ray adsorption fine structure, and scanning transmission electron microscopy techniques and kinetic studies. It is discovered that the aggregation and leaching of Rh are induced by the strong adsorption of CO and aldehydes on Rh, as well as the reduction of Rh3+ by CO/H2 which weakens the binding of Rh with support. In contrast, alkene effectively counteracts this effect by the competitive adsorption on Rh atoms with CO/aldehyde, and the disintegration of Rh clusters. Based on these results, we propose a strategy to conduct the reaction under conditions of high alkene concentration, which proves to be able to stabilize Rh single atom against aggregation and/or leaching for more than 100 h time-on-stream.
Collapse
Affiliation(s)
- Zhounan Yu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengxin Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Leilei Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiaoyan Liu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhenghao Jia
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Lin Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Na Ta
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - An Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Liu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Aiqin Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
4
|
Zhang S, Chen J, Wei B, Zhou H, Hua K, Liu X, Wang H, Sun Y. Efficient Alkene Hydroformylation by Co-C Symmetry-Breaking Sites. J Am Chem Soc 2024; 146:6037-6044. [PMID: 38377954 DOI: 10.1021/jacs.3c13092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Alkene hydroformylation is one of the largest industrial reactions on an industrial scale; however, the development of nonnoble heterogeneous catalysts is usually limited by their low activities and stabilities. Herein, we constructed a 1% Co2C/SiO2 catalyst featuring Co-Cvacancy-Co-C symmetry-breaking sites, which generated a polar surface exhibiting a moderate charge density gradient at the localized Co atoms. Comparatively, this catalyst exhibited notable enhancements in the adsorption and activation of the reactants, as well as in the polarity between intermediates. Significantly, the spatial distance between the adsorption sites of intermediates was reduced, thereby effectively decreasing the energy barrier of reaction processes. As the density of the symmetry-breaking sites increased, the turnover number for propene hydroformylation soared to 18 363, exceeding the activity of heterogeneous Co-based catalysts reported thus far by 1 or 2 orders of magnitude, and the catalyst exhibited high stability during the reaction. This study provides a methodology for constructing atomically active sites, which holds great potential for the design and development of highly efficient catalysts.
Collapse
Affiliation(s)
- Shunan Zhang
- Institute of Carbon Neutrality, ShanghaiTech University, Shanghai 201203, PR China
| | - Junjun Chen
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, PR China
- University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Baiyin Wei
- Institute of Carbon Neutrality, ShanghaiTech University, Shanghai 201203, PR China
| | - Haozhi Zhou
- Institute of Carbon Neutrality, ShanghaiTech University, Shanghai 201203, PR China
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, PR China
| | - Kaimin Hua
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, PR China
| | - Xiaofang Liu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, PR China
| | - Hui Wang
- Institute of Carbon Neutrality, ShanghaiTech University, Shanghai 201203, PR China
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, PR China
| | - Yuhan Sun
- Institute of Carbon Neutrality, ShanghaiTech University, Shanghai 201203, PR China
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, PR China
| |
Collapse
|
5
|
Pu Z, Zhao J, Yin H, Zhao J, Ma X, Zeng J. Efficient Interfacial Sites between Metallic and Oxidized Cobalt for Propene Hydroformylation. NANO LETTERS 2024; 24:852-858. [PMID: 38051031 DOI: 10.1021/acs.nanolett.3c03667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Currently, the hydroformylation of short olefins is operated almost exclusively by using Rh catalysts. Considering the high cost and scarcity of rhodium resources, it is important to develop non-noble metal catalysts toward hydroformylation. Herein, we report an efficient cobalt-based catalyst rich in interfacial sites between metallic and oxidized cobalt species for the hydroformylation of short olefin, propene, under a moderate syngas pressure. The catalyst exhibited a high specific activity of 252 mol molCo-1 h-1 in toluene under 2 bar of propene and 40 bar of CO/H2 mixed gas (CO/H2 = 1:1) at 160 °C. According to mechanistic studies, the interface of metallic and oxidized cobalt species promoted the adsorption of CO and propene. Moreover, the interfacial sites lowered the energy barrier for CO* hydrogenation and C-C coupling compared with metallic cobalt.
Collapse
Affiliation(s)
- Zhengtian Pu
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Jiankang Zhao
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Haibin Yin
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Jin Zhao
- Department of Physics, ICQD/Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Xinlong Ma
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Jie Zeng
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| |
Collapse
|
6
|
Yan X, Chen L, Wei H, Liu T, Li K, Li J. Enhancing stability via confining Rh-P species in ZIF-8 for hydroformylation of 1-octene. Dalton Trans 2023; 52:13955-13961. [PMID: 37728511 DOI: 10.1039/d3dt02205f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
The stability of Rh-based heterogeneous catalysts is a key issue in the hydroformylation of olefins. Confinement of active Rh species has been considered an effective strategy to achieve stable catalysts. In this work, a phosphine ligand was successfully confined in ZIF-8 material and coordinated with Rh metal by a reduction procedure to develop an efficient and stable Rh-based catalyst for hydroformylation of 1-octene. The results indicate that the catalyst reduced at 300 °C under H2 atmosphere exhibits better stability than that with NaBH4 as reductant and undoped P catalyst. Various characterization studies demonstrate that the superior performance is due to the strong interaction between Rh metal and P, which inhibits the leaching of active Rh species. This work reveals an effective strategy for the synthesis of highly stable catalysts for use in the hydroformylation reaction.
Collapse
Affiliation(s)
- Xiaorui Yan
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong, China.
| | - Lele Chen
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong, China.
| | - Haisheng Wei
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong, China.
| | - Tiantian Liu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong, China.
| | - Kairui Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong, China.
| | - Jing Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong, China.
| |
Collapse
|
7
|
Zhang F, Jiang Y, Dai S, Wei X, Ma Y, Liao H, Qin Y, Peng Q, Zhao X, Hou Z. Selective Hydrogenation of Nitrobenzene to para-Aminophenol on a Zirconium-Phosphate-Supported Platinum Catalyst. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Fengxue Zhang
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yongjun Jiang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Sheng Dai
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Xinjia Wei
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuan Ma
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Huiying Liao
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuxi Qin
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qingpo Peng
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiuge Zhao
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhenshan Hou
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, School of Chemistry and Molecular Engineering, Shanghai 200062, China
| |
Collapse
|
8
|
Tao S, Yang D, Wang M, Sun G, Xiong G, Gao W, Zhang Y, Pan Y. Single-atom catalysts for hydroformylation of olefins. iScience 2023; 26:106183. [PMID: 36922997 PMCID: PMC10009200 DOI: 10.1016/j.isci.2023.106183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Hydroformylation is one of the most significant homogeneous reactions. Compared with homogeneous catalysts, heterogeneous catalysts are easy to be separated from the system. However, heterogeneous catalysis faces the problems of low activity and poor chemical/regional selectivity. Therefore, there are theoretical and practical significance to develop efficient heterogeneous catalysts. SACs can be widely applied in hydroformylation in the future, due to the high atom utilization efficiency, stable active sites, easy separation, and recovery. In this review, the recent advances of SACs for hydroformylation are summarized. The regulation of microstructure affected on the reactivity, stability of SACs, and chem/regioselectivity of SACs for hydroformylation are discussed. The support effect, ligand effect, and electron effect on the performance of SACs are proposed, and the catalytic mechanism of SACs is elaborated. Finally, we summarize the current challenges in this field, and propose the design and research ideas of SACs for hydroformylation of olefins.
Collapse
Affiliation(s)
- Shu Tao
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Da Yang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Minmin Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Guangxun Sun
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Gaoyan Xiong
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Wenwen Gao
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Youzhi Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Yuan Pan
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
9
|
Liu Z, Sun S, Yang F, Liu H, Sun Y, Ta N, Zhang G, Che S, Li Y. Synergistic Effect of Fe/Cu-N-C Dual Single-Atom Catalyst for C-H Bond Oxidation. J Colloid Interface Sci 2022; 632:237-248. [DOI: 10.1016/j.jcis.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
|
10
|
Hu H, Xi J. Single-atom catalysis for organic reactions. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Xu W, Ma Y, Wei X, Gong H, Zhao X, Qin Y, Peng Q, Hou Z. Core–shell Co@CoO catalysts for the hydroformylation of olefins. NEW J CHEM 2022. [DOI: 10.1039/d2nj02797f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Co@CoO core–shell nanoparticles featured as metal Co(0) cores wrapped by CoO shells were constructed via a solvent-thermal process in deep eutectic solvents and showed superior activity and stability for the hydroformylation of olefins.
Collapse
Affiliation(s)
- Wen Xu
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Xuhui District, Shanghai, 200237, China
| | - Yuan Ma
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Xuhui District, Shanghai, 200237, China
| | - Xinjia Wei
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Xuhui District, Shanghai, 200237, China
| | - Honghui Gong
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Xuhui District, Shanghai, 200237, China
| | - Xiuge Zhao
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Xuhui District, Shanghai, 200237, China
| | - Yuxi Qin
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Xuhui District, Shanghai, 200237, China
| | - Qingpo Peng
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Xuhui District, Shanghai, 200237, China
| | - Zhenshan Hou
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Xuhui District, Shanghai, 200237, China
| |
Collapse
|