1
|
Zhou C, Singh D, Arndtsen BA. A Versatile Carbonylative Approach to Ureas and Carbamates through Light Activated Nickel Catalyzed Formation of Aliphatic Isocyanates. Angew Chem Int Ed Engl 2025; 64:e202423519. [PMID: 39945527 DOI: 10.1002/anie.202423519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/13/2025] [Indexed: 02/22/2025]
Abstract
We describe the development of a nickel-catalyzed route to prepare aliphatic isocyanates via carbonylation chemistry. Unlike thermal reactions, where the affinity of Ni(0) for carbon monoxide has traditionally limited its use in carbonylations, mechanistic studies suggest that visible light excitation of a Xantphos-bound nickel catalyst can enable a radical pathway for the carbonylation of alkyl halides, while the CO-bound nickel drives the formation of a reactive acyl azide product for rapid Curtius rearrangement. Coupling this transformation with subsequent nucleophilic reactions has opened a unique and modular pathway to apply carbonylations to the synthesis of an array of diversely substituted, unsymmetrical ureas and carbamates, including those of relevance to drug design.
Collapse
Affiliation(s)
- Cuihan Zhou
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| | - Dushyant Singh
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| | - Bruce A Arndtsen
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| |
Collapse
|
2
|
Zhao HQ, Li WT, Yao Y, Zhao YL, Ouyang XH. Iron-Catalyzed Perfluoroalkylarylation of Styrenes with Arenes and Alkyl Iodides Enabled by Halogen Atom Transfer. Org Lett 2024; 26:10183-10188. [PMID: 39556037 DOI: 10.1021/acs.orglett.4c04095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
A new iron-catalyzed three-component perfluoroalkylarylation of styrenes with alkyl halides and arenes has been established. Alkyl halides undergo halogen atom transfer with methyl radicals to form alkyl radicals in reactions initiated by a combination of tert-butyl peroxybenzoate and an iron catalyst, thus adducting to the olefins, which results in alkylarylation products. The protocol is compatible with a wide range of perfluoroalkyl and non-perfluoroalkyl halides, features excellent functional group tolerance, and enables the synthesis of structurally diverse 1,1-diaryl fluoro-substituted alkanes.
Collapse
Affiliation(s)
- Han-Qing Zhao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China
| | - Wan-Ting Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China
| | - Yong Yao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China
| | - Yi-Lin Zhao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China
| | - Xuan-Hui Ouyang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
3
|
Li W, Wu XF, Zhao Y. Mechanistic Insights into the Palladium-Catalyzed Perfluoroalkylative Carbonylation of Unactivated Alkenes to β-Perfluoroalkyl Esters: A DFT Study. J Phys Chem A 2024. [PMID: 38691449 DOI: 10.1021/acs.jpca.3c08287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Transition metal-catalyzed multicomponent carbonylation is an efficient synthetic strategy to access multifunctional esters in high yields with broad functional group tolerance and good chemoselectivity. Considering the development of highly efficient synthetic methods for esters, it remains significant to grasp the mechanism of constructing multifunctional esters. Herein, density functional theoretical calculations were carried out to acquire mechanistic insight into the synthesis of β-perfluoroalkyl esters from a specific palladium-catalyzed perfluoroalkylative carbonylation of unactivated alkenes using carbon monoxide. A detailed mechanistic understanding of this reaction route includes (1) multistep radical reaction process, (2) C-C coupling and CO insertion, (3) ligand exchange, and (4) Pd-based intermediate oxidation and reductive elimination. The multistep radical process was fundamentally rationalized, including Rf· formation and radicals A and E from unactivated alkene and CO oxidation, respectively. The potential energy calculation indicated that the CO insertion into the perfluorinated alkyl radicals preceded Pd-catalyzed oxidation in the competitively multistep free radical reaction process. In addition, the I-/PhO- exchange step was predicted to be spontaneous to products. The IGMH analysis further attested to the reductive elimination process involved in the rate-determining step. Thus, a simple and valid density functional theory (DFT) approach was developed to reveal the multistep radical mechanism for the Pd-catalyzed perfluoroalkylative carbonylation of unactivated alkenes to access functional β-perfluoroalkyl esters.
Collapse
Affiliation(s)
- Wenbo Li
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Yanying Zhao
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
4
|
Kuai CS, Teng BH, Wu XF. Palladium-Catalyzed Carbonylative Multicomponent Fluoroalkylation of 1,3-Enynes: Concise Construction of Diverse Cyclic Compounds. Angew Chem Int Ed Engl 2024; 63:e202318257. [PMID: 38116921 DOI: 10.1002/anie.202318257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/21/2023]
Abstract
Multicomponent reactions, particularly those entailing four or more reagents, have presented a longstanding challenge due to the inherent complexities associated with balancing reactivity, selectivity, and compatibility. In this study, we describe a palladium-catalyzed multi-component fluoroalkylative carbonylation of 1,3-enynes. A series of products featuring three active functional groups-allene, fluoroalkyl, and carboxyl, were efficiently and selectively integrated in a single chemical operation. Furthermore, more intricate fluoroalkyl-substituted pyrimidinones can be constructed by simply altering the 1,3-bisnucleophilic reagent. This approach also provides a valuable strategy for the late-stage modification of naturally occurring molecules and concise construction of diverse cyclic compounds.
Collapse
Affiliation(s)
- Chang-Sheng Kuai
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bing-Hong Teng
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- School of Chemistry and Chemical Engineering, Liaoning Normal University, 850 Huanghe Road, Dalian, 116029, China
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straβe 29a, 18059, Rostock, Germany
| |
Collapse
|
5
|
Zhang Y, Teng BH, Wu XF. Copper-catalyzed trichloromethylative carbonylation of ethylene. Chem Sci 2024; 15:1418-1423. [PMID: 38274060 PMCID: PMC10806816 DOI: 10.1039/d3sc05530b] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024] Open
Abstract
Difunctionalization of alkenes is an efficient strategy for the synthesis of complex compounds from readily available starting materials. Herein, we developed a copper-catalyzed visible-light-mediated trichloromethylative carbonylation of ethylene by employing commercially available CCl4 and CO as trichloromethyl and carbonyl sources, respectively. With this protocol, various nucleophiles including amines, phenols, and alcohols can be rapidly transformed into β-trichloromethyl carboxylic acid derivatives with good functional-group tolerance. Bis-vinylated γ-trichloromethyl amides can also be obtained by adjusting the pressure of carbon monoxide and ethylene. In addition, this photocatalytic system can be successfully applied in the late-stage functionalization of bioactive molecules and pharmaceutical derivatives as well.
Collapse
Affiliation(s)
- Youcan Zhang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science Shanghai 201620 China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 116023 Dalian Liaoning China
| | - Bing-Hong Teng
- School of Chemistry and Chemical Engineering, Liaoning Normal University 850 Huanghe Road Dalian 116029 China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 116023 Dalian Liaoning China
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 116023 Dalian Liaoning China
- Leibniz-Institut Für Katalyse e.V. Albert-Einstein-Straβe 29a 18059 Rostock Germany
| |
Collapse
|
6
|
Xu JX, Yuan Y, Wu XF. Ethylene as a synthon in carbonylative synthesis. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Xu JX, Wang LC, Wu XF. Non-Noble Metal-Catalyzed Carbonylative Multi-Component Reactions. Chem Asian J 2022; 17:e202200928. [PMID: 36102174 DOI: 10.1002/asia.202200928] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/13/2022] [Indexed: 11/09/2022]
Abstract
Carbonylative multi-component reactions (CMCR), having four or more kinds of starting materials, provide an efficient strategy for the preparation of polyfunctional carbonylated compounds. Diverse CMCR utilizing non-noble transition-metal catalysts have been developed. This review summarized and discussed the recent advances in non-noble metal-catalyzed carbonylative multi-component reactions.
Collapse
Affiliation(s)
- Jian-Xing Xu
- DICP: Chinese Academy of Sciences Dalian Institute of Chemical Physics, chemistry, CHINA
| | - Le-Cheng Wang
- DICP: Chinese Academy of Sciences Dalian Institute of Chemical Physics, chemistry, CHINA
| | - Xiao-Feng Wu
- Leibniz-Institut fur Katalyse eV, organmetallic and catalyst, Albert-Einstein-Str. 29a, 18059, Rostock, GERMANY
| |
Collapse
|
8
|
Zhang Y, Bao ZP, Xu JX, Wu XF. Palladium-Catalyzed Perfluoroalkylative Carbonylation of 2-Allylaryl Trifluoromethanesulfonates: Base-Controlled Selective Access to β-Perfluoroalkyl Amides. Org Lett 2022; 24:6845-6850. [PMID: 36098561 DOI: 10.1021/acs.orglett.2c02779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A palladium-catalyzed perfluoroalkylative carbonylation of 2-allylaryl trifluoromethanesulfonates has been developed. A range of 2-allyl trifluoromethanesulfonates, perfluoroalkyl halides, and amines were applied in this tandem procedure to provide the corresponding β-perfluoroalkyl amides with good functional group tolerance and high chemoselectivity. The final products were controlled by the base applied.
Collapse
Affiliation(s)
- Youcan Zhang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, Liaoning, China
| | - Zhi-Peng Bao
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, Liaoning, China.,Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Jian-Xing Xu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, Liaoning, China
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, Liaoning, China.,Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| |
Collapse
|
9
|
Oxygen-Doped Carbon Nitride for Enhanced Photocatalytic Activity in Visible-Light-Induced Decarboxylative Annulation Reactions. J Catal 2022. [DOI: 10.1016/j.jcat.2022.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|