1
|
Henry CO, Dalloneau E, Pérez-Berezo MT, Plata C, Wu Y, Guillon A, Morello E, Aimar RF, Potier-Cartereau M, Esnard F, Coraux C, Börnchen C, Kiefmann R, Vandier C, Touqui L, Valverde MA, Cenac N, Si-Tahar M. In vitro and in vivo evidence for an inflammatory role of the calcium channel TRPV4 in lung epithelium: Potential involvement in cystic fibrosis. Am J Physiol Lung Cell Mol Physiol 2016; 311:L664-75. [PMID: 27496898 DOI: 10.1152/ajplung.00442.2015] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 07/26/2016] [Indexed: 12/22/2022] Open
Abstract
Cystic fibrosis (CF) is an inherited disease associated with chronic severe lung inflammation, leading to premature death. To develop innovative anti-inflammatory treatments, we need to characterize new cellular and molecular components contributing to the mechanisms of lung inflammation. Here, we focused on the potential role of "transient receptor potential vanilloid-4" (TRPV4), a nonselective calcium channel. We used both in vitro and in vivo approaches to demonstrate that TRPV4 expressed in airway epithelial cells triggers the secretion of major proinflammatory mediators such as chemokines and biologically active lipids, as well as a neutrophil recruitment in lung tissues. We characterized the contribution of cytosolic phospholipase A2, MAPKs, and NF-κB in TRPV4-dependent signaling. We also showed that 5,6-, 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acids, i.e., four natural lipid-based TRPV4 agonists, are present in expectorations of CF patients. Also, TRPV4-induced calcium mobilization and inflammatory responses were enhanced in cystic fibrosis transmembrane conductance regulator-deficient cellular and animal models, suggesting that TRPV4 is a promising target for the development of new anti-inflammatory treatments for diseases such as CF.
Collapse
Affiliation(s)
- Clémence O Henry
- Inserm U1100, Centre d'Etude des Pathologies Respiratoires, Tours, France; Université François Rabelais, Tours, France
| | - Emilie Dalloneau
- Inserm U1100, Centre d'Etude des Pathologies Respiratoires, Tours, France; Université François Rabelais, Tours, France
| | - Maria-Teresa Pérez-Berezo
- Centre de Physiopathologie de Toulouse Purpan, Inserm U1043, Toulouse, France; CNRS U5282, Toulouse, France; Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Cristina Plata
- Laboratory of Molecular Physiology and Channelopathies, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Yongzheng Wu
- Unité de Défense Innée et Inflammation, Inserm U874, Institut Pasteur, Paris, France
| | - Antoine Guillon
- Inserm U1100, Centre d'Etude des Pathologies Respiratoires, Tours, France; Université François Rabelais, Tours, France; Service de Réanimation Polyvalente, Centre Hospitalier Régional Universitaire de Tours, Tours, France
| | - Eric Morello
- Inserm U1100, Centre d'Etude des Pathologies Respiratoires, Tours, France; Université François Rabelais, Tours, France
| | - Rose-France Aimar
- Inserm U1100, Centre d'Etude des Pathologies Respiratoires, Tours, France; Université François Rabelais, Tours, France
| | - Marie Potier-Cartereau
- Université François Rabelais, Tours, France; Inserm UMR1069, Nutrition, Croissance et Cancer, Tours, France; Ion Channels and Cancer network-Canceropole Grand Ouest, Tours, France
| | - Frédéric Esnard
- Inserm U1100, Centre d'Etude des Pathologies Respiratoires, Tours, France; Université François Rabelais, Tours, France
| | - Christelle Coraux
- Inserm UMR-S 903, SFR CAP-SANTE (FED 4231), Université de Champagne-Ardenne, Reims, France
| | - Christian Börnchen
- Cardiovascular Research Center Hamburg and German Center for Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; and Department of Anaesthesiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rainer Kiefmann
- Cardiovascular Research Center Hamburg and German Center for Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; and Department of Anaesthesiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christophe Vandier
- Université François Rabelais, Tours, France; Inserm UMR1069, Nutrition, Croissance et Cancer, Tours, France; Ion Channels and Cancer network-Canceropole Grand Ouest, Tours, France
| | - Lhousseine Touqui
- Unité de Défense Innée et Inflammation, Inserm U874, Institut Pasteur, Paris, France
| | - Miguel A Valverde
- Laboratory of Molecular Physiology and Channelopathies, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Nicolas Cenac
- Centre de Physiopathologie de Toulouse Purpan, Inserm U1043, Toulouse, France; CNRS U5282, Toulouse, France; Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Mustapha Si-Tahar
- Inserm U1100, Centre d'Etude des Pathologies Respiratoires, Tours, France; Université François Rabelais, Tours, France;
| |
Collapse
|
2
|
Meijer L, Nelson DJ, Riazanski V, Gabdoulkhakova AG, Hery-Arnaud G, Le Berre R, Loaëc N, Oumata N, Galons H, Nowak E, Gueganton L, Dorothée G, Prochazkova M, Hall B, Kulkarni AB, Gray RD, Rossi AG, Witko-Sarsat V, Norez C, Becq F, Ravel D, Mottier D, Rault G. Modulating Innate and Adaptive Immunity by (R)-Roscovitine: Potential Therapeutic Opportunity in Cystic Fibrosis. J Innate Immun 2016; 8:330-49. [PMID: 26987072 PMCID: PMC4800827 DOI: 10.1159/000444256] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/25/2016] [Accepted: 01/25/2016] [Indexed: 12/17/2022] Open
Abstract
(R)-Roscovitine, a pharmacological inhibitor of kinases, is currently in phase II clinical trial as a drug candidate for the treatment of cancers, Cushing's disease and rheumatoid arthritis. We here review the data that support the investigation of (R)-roscovitine as a potential therapeutic agent for the treatment of cystic fibrosis (CF). (R)-Roscovitine displays four independent properties that may favorably combine against CF: (1) it partially protects F508del-CFTR from proteolytic degradation and favors its trafficking to the plasma membrane; (2) by increasing membrane targeting of the TRPC6 ion channel, it rescues acidification in phagolysosomes of CF alveolar macrophages (which show abnormally high pH) and consequently restores their bactericidal activity; (3) its effects on neutrophils (induction of apoptosis), eosinophils (inhibition of degranulation/induction of apoptosis) and lymphocytes (modification of the Th17/Treg balance in favor of the differentiation of anti-inflammatory lymphocytes and reduced production of various interleukins, notably IL-17A) contribute to the resolution of inflammation and restoration of innate immunity, and (4) roscovitine displays analgesic properties in animal pain models. The fact that (R)-roscovitine has undergone extensive preclinical safety/pharmacology studies, and phase I and II clinical trials in cancer patients, encourages its repurposing as a CF drug candidate.
Collapse
Affiliation(s)
- Laurent Meijer
- Centre de Perharidy, ManRos Therapeutics, Roscoff, France
| | - Deborah J. Nelson
- Department of Pharmacological and Physiological Sciences, The University of Chicago, Chicago, Ill., USA
| | - Vladimir Riazanski
- Department of Pharmacological and Physiological Sciences, The University of Chicago, Chicago, Ill., USA
| | - Aida G. Gabdoulkhakova
- Department of Pharmacological and Physiological Sciences, The University of Chicago, Chicago, Ill., USA
| | - Geneviève Hery-Arnaud
- Unité de Bactériologie, Hôpital de la Cavale Blanche, CHRU Brest, Brest, France
- EA3882-LUBEM, Université de Brest, UFR de Médecine et des Sciences de la Santé, Brest, France
| | - Rozenn Le Berre
- EA3882-LUBEM, Université de Brest, UFR de Médecine et des Sciences de la Santé, Brest, France
- Département de Médecine Interne et Pneumologie, CHRU Brest, Brest, France
| | - Nadège Loaëc
- Centre de Perharidy, ManRos Therapeutics, Roscoff, France
| | - Nassima Oumata
- Centre de Perharidy, ManRos Therapeutics, Roscoff, France
| | - Hervé Galons
- Unité de Technologies Chimiques et Biologiques pour la Santé, Université Paris Descartes UMR-S 1022 INSERM, Paris, France
| | - Emmanuel Nowak
- Hôpital de la Cavale Blanche, CHRU Brest, Centre d'Investigation Clinique, INSERM CIC 1412, Brest, France
| | | | - Guillaume Dorothée
- Immune System, Neuroinflammation and Neurodegenerative Diseases Laboratory, Inflammation-Immunopathology-Biotherapy Department (DHU i2B), CdR Saint-Antoine, INSERM, UMRS 938, Paris, France
- Hôpital Saint-Antoine, CdR Saint-Antoine, UMRS 938, UPMC University Paris 06, Sorbonne Universités, Paris, France
| | - Michaela Prochazkova
- Functional Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, NIH, Bethesda, Md., USA
| | - Bradford Hall
- Functional Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, NIH, Bethesda, Md., USA
| | - Ashok B. Kulkarni
- Functional Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, NIH, Bethesda, Md., USA
| | - Robert D. Gray
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh Medical School, Edinburgh, UK
| | - Adriano G. Rossi
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh Medical School, Edinburgh, UK
| | | | - Caroline Norez
- Laboratoire Signalisation et Transports Ioniques Membranaires, CNRS, Université de Poitiers, Poitiers, France
| | - Frédéric Becq
- Laboratoire Signalisation et Transports Ioniques Membranaires, CNRS, Université de Poitiers, Poitiers, France
| | | | - Dominique Mottier
- Hôpital de la Cavale Blanche, CHRU Brest, Centre d'Investigation Clinique, INSERM CIC 1412, Brest, France
| | | |
Collapse
|
3
|
Spielberg DR, Clancy JP. Cystic Fibrosis and Its Management Through Established and Emerging Therapies. Annu Rev Genomics Hum Genet 2016; 17:155-75. [PMID: 26905785 DOI: 10.1146/annurev-genom-090314-050024] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cystic fibrosis (CF) is the most common life-shortening autosomal recessive disorder in the Caucasian population and occurs in many other ethnicities worldwide. The daily treatment burden is substantial for CF patients even when they are well, with numerous pharmacologic and physical therapies targeting lung disease requiring the greatest time commitment. CF treatments continue to advance with greater understanding of factors influencing long-term morbidity and mortality. In recent years, in-depth understanding of genetic and protein structure-function relationships has led to the introduction of targeted therapies for patients with specific CF genotypes. With these advances, CF has become a model of personalized or precision medicine. The near future will see greater access to targeted therapies for most patients carrying common mutations, which will mandate individualized bench-to-bedside methodologies for those with rare genotypes.
Collapse
Affiliation(s)
- David R Spielberg
- Department of Pediatrics, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, Ohio 45229; ,
| | - John P Clancy
- Department of Pediatrics, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, Ohio 45229; ,
| |
Collapse
|
4
|
Reverri EJ, Morrissey BM, Cross CE, Steinberg FM. Inflammation, oxidative stress, and cardiovascular disease risk factors in adults with cystic fibrosis. Free Radic Biol Med 2014; 76:261-77. [PMID: 25172163 DOI: 10.1016/j.freeradbiomed.2014.08.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 07/31/2014] [Accepted: 08/05/2014] [Indexed: 12/21/2022]
Abstract
Cystic fibrosis (CF) represents one of a number of localized lung and non-lung diseases with an intense chronic inflammatory component associated with evidence of systemic oxidative stress. Many of these chronic inflammatory diseases are accompanied by an array of atherosclerotic processes and cardiovascular disease (CVD), another condition strongly related to inflammation and oxidative stress. As a consequence of a dramatic increase in long-lived patients with CF in recent decades, the specter of CVD must be considered in these patients who are now reaching middle age and beyond. Buttressed by recent data documenting that CF patients exhibit evidence of endothelial dysfunction, a recognized precursor of atherosclerosis and CVD, the spectrum of risk factors for CVD in CF is reviewed here. Epidemiological data further characterizing the presence and extent of atherogenic processes in CF patients would seem important to obtain. Such studies should further inform and offer mechanistic insights into how other chronic inflammatory diseases potentiate the processes leading to CVDs.
Collapse
Affiliation(s)
- Elizabeth J Reverri
- Department of Nutrition, University of California Davis, One Shields Avenue, 3135 Meyer Hall, Davis, CA 95616, USA
| | - Brian M Morrissey
- Adult Cystic Fibrosis Clinic and Division of Pulmonary-Critical Care Medicine, University of California Davis Medical Center, 4150 V Street, Sacramento, CA 95817, USA
| | - Carroll E Cross
- Adult Cystic Fibrosis Clinic and Division of Pulmonary-Critical Care Medicine, University of California Davis Medical Center, 4150 V Street, Sacramento, CA 95817, USA.
| | - Francene M Steinberg
- Department of Nutrition, University of California Davis, One Shields Avenue, 3135 Meyer Hall, Davis, CA 95616, USA
| |
Collapse
|
5
|
Clancy JP, Johnson SG, Yee SW, McDonagh EM, Caudle KE, Klein TE, Cannavo M, Giacomini KM. Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for ivacaftor therapy in the context of CFTR genotype. Clin Pharmacol Ther 2014; 95:592-7. [PMID: 24598717 DOI: 10.1038/clpt.2014.54] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 02/24/2014] [Indexed: 01/19/2023]
Abstract
Cystic fibrosis (CF) is a life-shortening disease arising as a consequence of mutations within the CFTR gene. Novel therapeutics for CF are emerging that target CF transmembrane conductance regulator protein (CFTR) defects resulting from specific CFTR variants. Ivacaftor is a drug that potentiates CFTR gating function and is specifically indicated for CF patients with a particular CFTR variant, G551D-CFTR (rs75527207). Here, we provide therapeutic recommendations for ivacaftor based on preemptive CFTR genotype results.
Collapse
Affiliation(s)
- J P Clancy
- 1] Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA [2] Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| | - S G Johnson
- 1] Department of Clinical Pharmacy, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Denver, Colorado, USA [2] Clinical Pharmacy Services, Kaiser Permanente Colorado, Denver, Colorado, USA
| | - S W Yee
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - E M McDonagh
- Department of Genetics, Stanford University Medical Center, Stanford, California, USA
| | - K E Caudle
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - T E Klein
- Department of Genetics, Stanford University Medical Center, Stanford, California, USA
| | - M Cannavo
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - K M Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | | |
Collapse
|
6
|
Kotha K, Clancy JP. Ivacaftor treatment of cystic fibrosis patients with the G551D mutation: a review of the evidence. Ther Adv Respir Dis 2013; 7:288-96. [DOI: 10.1177/1753465813502115] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cystic fibrosis (CF) is a recessive disorder caused by mutations in the gene that encodes the CF transmembrane conductance regulator (CFTR) protein. CFTR protein is a chloride and bicarbonate channel that is critical for normal epithelial ion transport and hydration of epithelial surfaces. Current CF care is supportive, but recent breakthroughs have occurred with the advent of novel therapeutic strategies that assist the function of mutant CFTR proteins. The development and key clinical trial results of ivacaftor, a small molecule that targets gating defects in disease-causing CFTR mutations including G551D CFTR, are summarized in this review. The G551D mutation is reasonably common in the CF patient population and produces a CFTR protein that localizes normally to the plasma membrane, but fails to open in response to cellular cues. Ivacaftor treatment produces dramatic improvements in lung function, weight, lung disease stability, patient-reported outcomes, and CFTR biomarkers in patients with CF harboring the G551D CFTR mutation compared with placebo controls and patients with two copies of the common F508del CFTR mutation. The unprecedented success of ivacaftor treatment for the G551D CF patient population has generated excitement in the CF care community regarding the expansion of its use to other CF patient populations with primary or secondary gating defects.
Collapse
Affiliation(s)
- Kavitha Kotha
- Division of Pulmonary Medicine, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati, Cincinnati, OH, USA
| | - John P. Clancy
- Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, ML 2021, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
| |
Collapse
|
7
|
Hartl D, Gaggar A, Bruscia E, Hector A, Marcos V, Jung A, Greene C, McElvaney G, Mall M, Döring G. Innate immunity in cystic fibrosis lung disease. J Cyst Fibros 2012; 11:363-82. [PMID: 22917571 DOI: 10.1016/j.jcf.2012.07.003] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 06/29/2012] [Accepted: 07/02/2012] [Indexed: 12/16/2022]
Abstract
Chronic lung disease determines the morbidity and mortality of cystic fibrosis (CF) patients. The pulmonary immune response in CF is characterized by an early and non-resolving activation of the innate immune system, which is dysregulated at several levels. Here we provide a comprehensive overview of innate immunity in CF lung disease, involving (i) epithelial dysfunction, (ii) pathogen sensing, (iii) leukocyte recruitment, (iv) phagocyte impairment, (v) mechanisms linking innate and adaptive immunity and (iv) the potential clinical relevance. Dissecting the complex network of innate immune regulation and associated pro-inflammatory cascades in CF lung disease may pave the way for novel immune-targeted therapies in CF and other chronic infective lung diseases.
Collapse
Affiliation(s)
- D Hartl
- Department of Pediatrics I, University of Tübingen, Tübingen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Bui S, Boisserie-Lacroix V, Ceccato F, Clouzeau H, Debeleix S, Fayon M. L'inflammation pulmonaire dans la mucoviscidose. Arch Pediatr 2012; 19 Suppl 1:S8-12. [DOI: 10.1016/s0929-693x(12)71100-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Hector A, Kormann MSD, Mack I, Latzin P, Casaulta C, Kieninger E, Zhou Z, Yildirim AÖ, Bohla A, Rieber N, Kappler M, Koller B, Eber E, Eickmeier O, Zielen S, Eickelberg O, Griese M, Mall MA, Hartl D. The chitinase-like protein YKL-40 modulates cystic fibrosis lung disease. PLoS One 2011; 6:e24399. [PMID: 21949714 PMCID: PMC3176766 DOI: 10.1371/journal.pone.0024399] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 08/08/2011] [Indexed: 02/07/2023] Open
Abstract
The chitinase-like protein YKL-40 was found to be increased in patients with severe asthma and chronic obstructive pulmonary disease (COPD), two disease conditions featuring neutrophilic infiltrates. Based on these studies and a previous report indicating that neutrophils secrete YKL-40, we hypothesized that YKL-40 plays a key role in cystic fibrosis (CF) lung disease, a prototypic neutrophilic disease. The aim of this study was (i) to analyze YKL-40 levels in human and murine CF lung disease and (ii) to investigate whether YKL-40 single-nucleotide polymorphisms (SNPs) modulate CF lung disease severity. YKL-40 protein levels were quantified in serum and sputum supernatants from CF patients and control individuals. Levels of the murine homologue BRP-39 were analyzed in airway fluids from CF-like βENaC-Tg mice. YKL-40SNPs were analyzed in CF patients. YKL-40 levels were increased in sputum supernatants and in serum from CF patients compared to healthy control individuals. Within CF patients, YKL-40 levels were higher in sputum than in serum. BRP-39 levels were increased in airways fluids from βENaC-Tg mice compared to wild-type littermates. In both CF patients and βENaC-Tg mice, YKL-40/BRP-39 airway levels correlated with the severity of pulmonary obstruction. Two YKL-40 SNPs (rs871799 and rs880633) were found to modulate age-adjusted lung function in CF patients. YKL-40/BRP-39 levelsare increased in human and murine CF airway fluids, correlate with pulmonary function and modulate CF lung disease severity genetically. These findings suggest YKL-40 as a potential biomarker in CF lung disease.
Collapse
Affiliation(s)
- Andreas Hector
- Department I, Children's Hospital, University of Tübingen, Tübingen, Germany
| | | | - Ines Mack
- Research Center, Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Philipp Latzin
- Department of Paediatrics, University of Berne, Inselspital, Berne, Switzerland
| | - Carmen Casaulta
- Department of Paediatrics, University of Berne, Inselspital, Berne, Switzerland
| | - Elisabeth Kieninger
- Department of Paediatrics, University of Berne, Inselspital, Berne, Switzerland
| | - Zhe Zhou
- Division of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center, Department of Pediatrics III, University of Heidelberg, Heidelberg, Germany
| | - Ali Ö. Yildirim
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease (iLBD), University Hospital, Ludwig Maximilians University and Helmholtz ZentrumMünchen, Munich, Germany
| | - Alexander Bohla
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease (iLBD), University Hospital, Ludwig Maximilians University and Helmholtz ZentrumMünchen, Munich, Germany
| | - Nikolaus Rieber
- Department I, Children's Hospital, University of Tübingen, Tübingen, Germany
| | - Matthias Kappler
- Research Center, Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Barbara Koller
- Department of Dermatology and Allergy, Ludwig-Maximilians-University, Munich, Germany
| | - Ernst Eber
- Respiratory and Allergic Disease Division, Paediatric Department, Medical University of Graz, Graz, Austria
| | - Olaf Eickmeier
- Department of Pediatric Pulmonology, Allergy and Cystic Fibrosis, Children's Hospital, Frankfurt, Germany
| | - Stefan Zielen
- Department of Pediatric Pulmonology, Allergy and Cystic Fibrosis, Children's Hospital, Frankfurt, Germany
| | - Oliver Eickelberg
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease (iLBD), University Hospital, Ludwig Maximilians University and Helmholtz ZentrumMünchen, Munich, Germany
| | - Matthias Griese
- Research Center, Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Marcus A. Mall
- Division of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center, Department of Pediatrics III, University of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center, University of Heidelberg, Heidelberg, Germany
| | - Dominik Hartl
- Department I, Children's Hospital, University of Tübingen, Tübingen, Germany
- * E-mail:
| |
Collapse
|
10
|
Dauletbaev N, Eklove D, Mawji N, Iskandar M, Di Marco S, Gallouzi IE, Lands LC. Down-regulation of cytokine-induced interleukin-8 requires inhibition of p38 mitogen-activated protein kinase (MAPK) via MAPK phosphatase 1-dependent and -independent mechanisms. J Biol Chem 2011; 286:15998-6007. [PMID: 21454676 DOI: 10.1074/jbc.m110.205724] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Down-regulation of overabundant interleukin (IL)-8 present in cystic fibrosis (CF) airways could ease excessive neutrophil burden and its deleterious consequences for the lung. IL-8 production in airway epithelial cells, stimulated with e.g. inflammatory cytokines IL-1β and tumor necrosis factor (TNF)-α, is regulated by several signaling pathways including nuclear factor (NF)-κB and p38 mitogen-activated protein kinase (MAPK). We previously demonstrated that the anti-inflammatory drugs dexamethasone and ibuprofen suppress NF-κB; however, only dexamethasone down-regulates cytokine-induced IL-8, highlighting the importance of non-NF-κB mechanisms. Here, we tested the hypothesis that down-regulation of cytokine-induced IL-8 requires modulation of the MAPK phosphatase (MKP)-1/p38 MAPK/mRNA stability pathway. The effects of dexamethasone (5 nm) and ibuprofen (480 μm) on this pathway and IL-8 were studied in CF (CFTE29o-, CFBE41o-) and non-CF (1HAEo-) airway epithelial cells. We observed that dexamethasone, but not ibuprofen, destabilizes IL-8 mRNA and up-regulates MKP-1 mRNA. Further, siRNA silencing of MKP-1, via p38 MAPK, leads to IL-8 overproduction and diminishes the anti-IL-8 potential of dexamethasone. However, MKP-1 overexpression does not significantly alter IL-8 production. By contrast, direct inhibition of p38 MAPK (inhibitor SB203580) efficiently suppresses IL-8 with potency comparable with dexamethasone. Similar to dexamethasone, SB203580 decreases IL-8 mRNA stability. Dexamethasone does not affect p38 MAPK activation, which excludes its effects upstream of p38 MAPK. In conclusion, normal levels of MKP-1 are necessary for a full anti-IL-8 potential of pharmacological agents; however, efficient pharmacological down-regulation of cytokine-induced IL-8 also requires direct effects on p38 MAPK and mRNA stability independently of MKP-1.
Collapse
Affiliation(s)
- Nurlan Dauletbaev
- Research Institute of McGill University Health Centre, Montreal, Quebec, Canada.
| | | | | | | | | | | | | |
Collapse
|
11
|
Ashlock MA, Olson ER. Therapeutics Development for Cystic Fibrosis: A Successful Model for a Multisystem Genetic Disease. Annu Rev Med 2011; 62:107-25. [DOI: 10.1146/annurev-med-061509-131034] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Melissa A. Ashlock
- Former affiliation: Cystic Fibrosis Foundation Therapeutics, Inc., Bethesda, Maryland 20814;
| | - Eric R. Olson
- Vertex Pharmaceuticals Incorporated, Cambridge, Massachusetts 02139;
| |
Collapse
|
12
|
Taylor-Cousar JL, Von Kessel KA, Young R, Nichols DP. Potential of anti-inflammatory treatment for cystic fibrosis lung disease. J Inflamm Res 2010; 3:61-74. [PMID: 22096358 PMCID: PMC3218732 DOI: 10.2147/jir.s8875] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cystic fibrosis (CF) is the most common life-shortening genetic disorder in Caucasians. With improved diagnosis and treatment, survival has steadily increased. Unfortunately, the overwhelming majority of patients still die from respiratory failure caused by structural damage resulting from airway obstruction, recurrent infection, and inflammation. Here, we discuss the role of inflammation and the development of anti-inflammatory therapies to treat CF lung disease. The inflammatory host response is the least addressed component of CF airway disease at this time. Current challenges in both preclinical and clinical investigation make the identification of suitable anti-inflammatory drugs more difficult. Despite this, many researchers are making significant progress toward this goal and the CF research community has reason to believe that new therapies will emerge from these efforts.
Collapse
|
13
|
Fausther M, Pelletier J, Ribeiro CM, Sévigny J, Picher M. Cystic fibrosis remodels the regulation of purinergic signaling by NTPDase1 (CD39) and NTPDase3. Am J Physiol Lung Cell Mol Physiol 2010; 298:L804-18. [PMID: 20190036 DOI: 10.1152/ajplung.00019.2010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Airway defenses are regulated by a complex purinergic signaling network located on the epithelial surfaces, where ATP stimulates the clearance of mucin and pathogens. The present study shows that the obstructive disease cystic fibrosis (CF) affects the activity, expression, and tissue distribution of two ectonucleotidases found critical for the regulation of ATP on airway surfaces: NTPDase1 and NTPDase3. Functional polarities and mRNA expression levels were determined on primary cultures of human bronchial epithelial (HBE) cells from healthy donors and CF patients. The in vitro model of the disease was completed by exposing CF HBE cultures for 4 days to supernatant of the mucopurulent material (SMM) collected from the airways of CF patients. We report that NTPDase1 and NTPDase3 are coexpressed on HBE cultures, where they regulate physiological and excess nucleotide concentrations, respectively. In aseptic conditions, CF epithelia exhibit >50% lower NTPDase1 activity, protein, and mRNA levels than normal epithelia, whereas these parameters are threefold higher for NTPDase3. Exposure to SMM induced opposite polarity shifts of the two NTPDases on both normal and CF epithelia, apical NTPDase1 being mobilized to basolateral surfaces and bilateral NTPDase3 to the apical surface. Their immunolocalization in human tissue revealed that NTPDase1 is expressed in epithelial, inflammatory, and endothelial cells, whereas NTPDase3 is restricted to epithelial cells. Furthermore, the SMM-exposed CF HBE cultures reproduced the impact of the disease on their in vivo distribution. This study provides evidence that an extensive remodeling of the enzymatic network regulating clearance occurs in the airways of CF patients.
Collapse
Affiliation(s)
- Michel Fausther
- Centre de Recherche en Rhumatologie et Immunologie, Université Laval, Ste-Foy, Quebec City, Canada
| | | | | | | | | |
Collapse
|
14
|
Kreindler JL. Cystic fibrosis: exploiting its genetic basis in the hunt for new therapies. Pharmacol Ther 2009; 125:219-29. [PMID: 19903491 DOI: 10.1016/j.pharmthera.2009.10.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 10/16/2009] [Indexed: 01/11/2023]
Abstract
Cystic fibrosis (CF) is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR), an anion channel expressed in epithelial cells throughout the body. In the lungs, absence or dysfunction of CFTR results in altered epithelial salt and water transport eventuating in impaired mucociliary clearance, chronic infection and inflammation, and tissue damage. CF lung disease is the major cause of morbidity and mortality in CF despite the many therapies aimed at reducing it. However, recent technological advances combined with two decades of research driven by the discovery of the CFTR gene have resulted in the development and clinical testing of novel therapies aimed at the principal underlying defect in CF, thereby ushering in a new age of therapy for CF.
Collapse
Affiliation(s)
- James L Kreindler
- Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, 3615 Civic Center Boulevard, Abramson Research Center, Rm 1016-D, Philadelphia, PA 19104, USA.
| |
Collapse
|
15
|
Sorio C, Melotti P. Editorial: The role of macrophages and their scavenger receptors in cystic fibrosis. J Leukoc Biol 2009; 86:465-8. [PMID: 19720614 DOI: 10.1189/jlb.0309120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|