1
|
Roberts B, Thaarup I. Simulated Media for Mimicking the Human Environment In Vitro. APMIS 2025; 133:e70024. [PMID: 40214088 PMCID: PMC11987485 DOI: 10.1111/apm.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/27/2025] [Accepted: 03/30/2025] [Indexed: 04/14/2025]
Abstract
The phrase 'All models are wrong but some are useful' spoken by George Box in 1976 is as relevant today as ever. Modern research relies heavily on models and the use of in vitro models is the cornerstone of developing novel treatments for various infectious diseases. Simple growth media have been, and still are, heavily used when performing research involving biofilms and infectious pathogens. However, using modern technologies, large discrepancies are now being revealed between bacteria grown in simple media versus those grown in more authentic media. These discrepancies can lead to significant differences in bacterial tolerances, growth patterns, biofilm formation abilities, etc. Hence, if the aim is to replicate the in vivo situation in a laboratory setting, the creation of realistic simulated bodily fluids should be prioritised. This paper presents a range of simulated human fluids from various body sites where infections often occur. Bacterial behaviour has been evaluated in all these media and is often compared to a simple growth medium counterpart. In all instances, significant differences are observed which might lead to important discrepancies, particularly in potential treatment efficiency. We hope this may serve as inspiration for any researcher doing in vitro work, attempting to mimic reality.
Collapse
Affiliation(s)
- Bethan Roberts
- Biodiscovery InstituteUniversity of NottinghamNottinghamUK
| | - Ida Thaarup
- Costerton Biofilm CentreUniversity of CopenhagenKøbenhavnDenmark
| |
Collapse
|
2
|
Wu HM, Fan YH, Phang GJ, Zeng WT, Abdrabo KAES, Wu YT, Sun PL, Lin YH, Huang YT. Human activity, not environmental factors, drives Scedosporium and Lomentospora distribution in Taiwan. Med Mycol 2025; 63:myaf022. [PMID: 40052326 DOI: 10.1093/mmy/myaf022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/08/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025] Open
Abstract
Scedosporium and Lomentospora species are emerging fungal pathogens capable of causing severe infections in both immunocompetent and immunocompromised individuals. Previous environmental surveys have suggested potential associations between these fungi and various soil chemical parameters, though the relative influence of human activity versus environmental factors has not been systematically evaluated. Here, we conducted a comprehensive survey of 406 soil samples from 132 locations across Taiwan, analyzing fungal abundance alongside soil physicochemical parameters and the Human Footprint Index (HFI). We recovered 236 fungal isolates comprising 10 species, with S. boydii (32.2%), S. apiospermum (30.9%), and S. dehoogii (14.4%) being the most prevalent. The highest fungal burdens were observed in urban environments (up to 1293 CFU/g), particularly in public spaces and healthcare facilities. Statistical analysis revealed a significant positive correlation between fungal abundance and HFI (r = 0.143, P = .005), while soil chemical parameters including nitrogen, carbon, pH, electrical conductivity, and various base cations showed no significant associations despite their wide ranges. These findings indicate that anthropogenic disturbance of environments, rather than soil chemistry, is the primary driver of Scedosporium and Lomentospora distribution in Taiwan. This understanding holds important implications for predicting infection risks and developing targeted public health strategies, particularly in rapidly urbanizing regions. Future studies incorporating more specific indicators of human impact may further elucidate the mechanisms underlying these distribution patterns.
Collapse
Affiliation(s)
- Hsin-Mao Wu
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Hsuan Fan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Guan-Jie Phang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Ting Zeng
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Khaled Abdrabo El-Sayid Abdrabo
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, Egypt
| | - Yu-Ting Wu
- Department of Forestry, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Pei-Lun Sun
- Department of Dermatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ying-Hong Lin
- Department of Plant Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Yin-Tse Huang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
3
|
Ramage G, Kean R, Rautemaa-Richardson R, Williams C, Lopez-Ribot JL. Fungal biofilms in human health and disease. Nat Rev Microbiol 2025:10.1038/s41579-025-01147-0. [PMID: 39910237 DOI: 10.1038/s41579-025-01147-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2025] [Indexed: 02/07/2025]
Abstract
Increased use of implanted medical devices, use of immunosuppressants and an ageing population have driven the rising frequency of fungal biofilm-related diseases. Fungi are now recognized by the World Health Organization (WHO) as an emergent threat to human health, with most medically important species defined as critical or high-priority organisms capable of forming biofilms. Although we strive for a better understanding of diagnostic and therapeutic approaches to detect and treat these fungal diseases more generally, the issue of hard-to-treat biofilms is an ever-increasing problem. These are communities of interspersed cells that are attached to one another on a surface, such as a catheter, or trapped into a cavity such as a paranasal sinus. Biofilms are difficult to detect, difficult to remove and intrinsically tolerant to most antifungal agents. These factors can lead to devastating consequences for the patient, including unnecessary morbidity and mortality, need for reoperations and prolonged hospital stay. This Review describes the breadth and growing impact fungal biofilms have on patient management and explains the mechanisms promoting biofilm formation, focusing on how targeting these can improve therapeutic options.
Collapse
Affiliation(s)
- Gordon Ramage
- School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, UK.
- European Society for Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Biofilms, Basel, Switzerland.
| | - Ryan Kean
- School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, UK
- European Society for Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Biofilms, Basel, Switzerland
| | - Riina Rautemaa-Richardson
- European Society for Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Biofilms, Basel, Switzerland
- Mycology Reference Centre Manchester, ECMM Centre of Excellence, and Department of Infectious Diseases, Manchester Academic Health Science Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Craig Williams
- European Society for Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Biofilms, Basel, Switzerland
- Department of Microbiology, Lancaster Royal Infirmary, University Hospitals of Morecambe Bay, Lancaster, UK
| | - Jose L Lopez-Ribot
- European Society for Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Biofilms, Basel, Switzerland
- Department of Molecular Microbiology and Immunology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, USA
| |
Collapse
|
4
|
Mello TP, Ramos LS, Andrade VV, Torres-Santos EC, Lackner M, Branquinha MH, Santos ALS. Elucidating the augmented resistance profile of Scedosporium/Lomentospora species to azoles in a cystic fibrosis mimic environment. J Antimicrob Chemother 2025; 80:106-115. [PMID: 39545480 DOI: 10.1093/jac/dkae381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 10/08/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Scedosporium/Lomentospora species are ranked as the second most frequently isolated filamentous fungi from cystic fibrosis (CF) patients. Previously, we demonstrated that the minimum inhibitory concentration (MIC) for voriconazole and posaconazole increased when performed on a mucin-containing synthetic CF sputum medium (SCFM) compared to the standard medium, RPMI-1640. In this study, we have expanded the MIC comparison to four additional azoles and investigated characteristics linked to azole resistance in Scedosporium apiospermum, Scedosporium minutisporum, Scedosporium aurantiacum and Lomentospora prolificans. METHODS MIC was assayed by CLSI protocol, efflux pump activity was assessed by rhodamine 6G and sterols were analysed by gas chromatography-mass spectrometry (GC-MS). RESULTS Overall, MICs for fluconazole, itraconazole, voriconazole, posaconazole, miconazole and ketoconazole increased by least 2-fold when susceptibility tests were performed using SCFM compared to RPMI. The activity of efflux pumps was similar in both media; however, in RPMI, but not in SCFM, the activity was induced by voriconazole and fluconazole. Additionally, MICs for those antifungals decreased more noticeably in SCFM than in RPMI in the presence of the efflux pump inhibitor PaβN. The SCFM-grown cells presented fewer sterols in their composition, and consequently higher membrane fluidity, than RPMI-grown cells. GC-MS analysis demonstrated a remodulation in the sterol profile in SCFM- compared to RPMI-grown cells. Accordingly, when the MIC assay was performed in the presence of the membrane stressor NaCl (3%), the susceptibility to voriconazole and fluconazole increased more in SCFM- than RPMI-grown cells. CONCLUSIONS Scedosporium/Lomentospora species undergo cellular adaptations in SCFM that favours their growth in face of the challenges imposed by azole antifungals.
Collapse
Affiliation(s)
- Thaís P Mello
- Departamento de Microbiologia Geral, Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| | - Lívia S Ramos
- Departamento de Microbiologia Geral, Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| | - Valter V Andrade
- Laboratório de Bioquímica de Tripanosomatídeos, Instituto Oswaldo Cruz, Av. Brasil, 4365-Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
| | - Eduardo Caio Torres-Santos
- Laboratório de Bioquímica de Tripanosomatídeos, Instituto Oswaldo Cruz, Av. Brasil, 4365-Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
| | - Michaela Lackner
- Medical University of Innsbruck, Institute for Hygiene and Medical Microbiology, Schöpfstrasse 41, 6020 Innsbruck, Austria
| | - Marta H Branquinha
- Departamento de Microbiologia Geral, Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
- Rede Micologia RJ-Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
| | - André L S Santos
- Departamento de Microbiologia Geral, Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
- Rede Micologia RJ-Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Neoh CF, Chen SCA, Lanternier F, Tio SY, Halliday CL, Kidd SE, Kong DCM, Meyer W, Hoenigl M, Slavin MA. Scedosporiosis and lomentosporiosis: modern perspectives on these difficult-to-treat rare mold infections. Clin Microbiol Rev 2024; 37:e0000423. [PMID: 38551323 PMCID: PMC11237582 DOI: 10.1128/cmr.00004-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
SUMMARYAlthough Scedosporium species and Lomentospora prolificans are uncommon causes of invasive fungal diseases (IFDs), these infections are associated with high mortality and are costly to treat with a limited armamentarium of antifungal drugs. In light of recent advances, including in the area of new antifungals, the present review provides a timely and updated overview of these IFDs, with a focus on the taxonomy, clinical epidemiology, pathogenesis and host immune response, disease manifestations, diagnosis, antifungal susceptibility, and treatment. An expansion of hosts at risk for these difficult-to-treat infections has emerged over the last two decades given the increased use of, and broader population treated with, immunomodulatory and targeted molecular agents as well as wider adoption of antifungal prophylaxis. Clinical presentations differ not only between genera but also across the different Scedosporium species. L. prolificans is intrinsically resistant to most currently available antifungal agents, and the prognosis of immunocompromised patients with lomentosporiosis is poor. Development of, and improved access to, diagnostic modalities for early detection of these rare mold infections is paramount for timely targeted antifungal therapy and surgery if indicated. New antifungal agents (e.g., olorofim, fosmanogepix) with novel mechanisms of action and less cross-resistance to existing classes, availability of formulations for oral administration, and fewer drug-drug interactions are now in late-stage clinical trials, and soon, could extend options to treat scedosporiosis/lomentosporiosis. Much work remains to increase our understanding of these infections, especially in the pediatric setting. Knowledge gaps for future research are highlighted in the review.
Collapse
Affiliation(s)
- Chin Fen Neoh
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Sharon C-A Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, New South Wales Health Pathology, Westmead Hospital, Sydney, Australia
- The University of Sydney, Sydney, Australia
- Department of Infectious Diseases, Westmead Hospital, Sydney, Australia
| | - Fanny Lanternier
- Service de Maladies Infectieuses et Tropicales, Hôpital universitaire Necker-Enfants malades, Paris, France
- National Reference Center for Invasive Mycoses and Antifungals, Translational Mycology research group, Mycology Department, Institut Pasteur, Université Paris Cité, Paris, France
| | - Shio Yen Tio
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Catriona L. Halliday
- Centre for Infectious Diseases and Microbiology Laboratory Services, New South Wales Health Pathology, Westmead Hospital, Sydney, Australia
| | - Sarah E. Kidd
- National Mycology Reference Centre, SA Pathology, Adelaide, Australia
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, Australia
| | - David C. M. Kong
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
- The National Centre for Antimicrobial Stewardship, The Peter Doherty Institute for Infections and Immunity, Melbourne, Australia
- Centre for Medicine Use and Safety, Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Melbourne, Australia
- School of Medicine, Deakin University, Waurn Ponds, Geelong, Australia
| | - Wieland Meyer
- The University of Sydney, Sydney, Australia
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - Martin Hoenigl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Translational Medical Mycology Research Group, ECMM Excellence Center for Clinical Mycology, Medical University of Graz, Graz, Austria
| | - Monica A. Slavin
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
6
|
Mello TP, Aor AC, Barcellos IC, Pereira MM, McCann M, Devereux M, Branquinha MH, Santos AL. Active Cu(II), Mn(II) and Ag(I) 1,10-phenanthroline/1,10-phenanthroline-5,6-dione/dicarboxylate chelates: effects on Scedosporium. Future Microbiol 2023; 18:1049-1059. [PMID: 37284767 DOI: 10.2217/fmb-2022-0202] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023] Open
Abstract
Background: Scedosporium/Lomentospora species are human pathogens that are resistant to almost all antifungals currently available in clinical practice. Methods: The effects of 16 1,10-phenanthroline (phen)/1,10-phenanthroline-5,6-dione/dicarboxylate chelates containing Cu(II), Mn(II) and Ag(I) against Scedosporium apiospermum, Scedosporium minutisporum, Scedosporium aurantiacum and Lomentospora prolificans were evaluated. Results: To different degrees, all of the test chelates inhibited the viability of planktonic conidial cells, displaying MICs ranging from 0.029 to 72.08 μM. Generally, Mn(II)-containing chelates were the least toxic to lung epithelial cells, particularly [Mn2(oda)(phen)4(H2O)2][Mn2(oda)(phen)4(oda)2].4H2O (MICs: 1.62-3.25 μM: selectivity indexes >64). Moreover, this manganese-based chelate reduced the biofilm biomass formation and diminished the mature biofilm viability. Conclusion: [Mn2(oda)(phen)4(H2O)2][Mn2(oda)(phen)4(oda)2].4H2O opens a new chemotherapeutic avenue for the deactivation of these emergent, multidrug-resistant filamentous fungi.
Collapse
Affiliation(s)
- Thaís P Mello
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Ana Carolina Aor
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Iuri C Barcellos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Matheus M Pereira
- Chemical Engineering Processes and Forest Products Research Centre (CIEPQPF), Department of Chemical Engineering, University of Coimbra, Coimbra, Portugal
| | - Malachy McCann
- Chemistry Department, Maynooth University, National University of Ireland, Maynooth, Ireland
| | - Michael Devereux
- The Centre for Biomimetic and Therapeutic Research, Focas Research Institute, Technological University Dublin, Dublin, Ireland
| | - Marta H Branquinha
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Rede Micologia RJ and Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
| | - André Ls Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Rede Micologia RJ and Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Bioquímica (PPGBq), Instituto de Química (IQ), Universidade Federal do Rio de Janeiro (UFRJ), Brazil
| |
Collapse
|
7
|
Mello TP, Barcellos IC, Branquinha MH, Santos AL. Cell dispersion during biofilm formation by Scedosporium apiospermum, Scedosporium aurantiacum, Scedosporium minutisporum and Lomentospora prolificans. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 4:100191. [PMID: 37229517 PMCID: PMC10203734 DOI: 10.1016/j.crmicr.2023.100191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023] Open
Abstract
Dispersion is an essential step in the lifecycle of biofilms, since it enables the dissemination of microbial cells and, consequently, the potential colonization of new sites. Filamentous fungi belonging to the Scedosporium/Lomentospora genera are opportunistic human pathogens able to form multidrug-resistant biofilms on surfaces of different chemical compositions, environments and nutritional conditions. Despite the rising understanding of how biofilms are formed by Scedosporium/Lomentospora species, the cell dispersal step has not yet been explored. In the present study, the cell dispersion was investigated during biofilm formation by S. apiospermum, S. minutisporum, S. aurantiacum and L. prolificans cells. The results revealed that conidia were the major type of dispersed cells, which were detected throughout biofilm development (from 24 to 72 h). Dispersion was not influenced by increased glucose concentration (the main source for energetic metabolism) neither the presence of voriconazole (the most common antifungal used to treat scedosporiosis); however, the presence of mucin (a component of mucous, present in the lungs of cystic fibrosis patients, who are usually affected by these filamentous fungi) triggered cell dispersion. Contrarily, a poor nutritional environment (e.g., phosphate-buffered saline) inhibited this step. Overall, our study reveals new insights into the biofilm development of Scedosporium/Lomentospora species.
Collapse
Affiliation(s)
- Thaís P. Mello
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, 21941-902, RJ, Brazil
| | - Iuri C. Barcellos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, 21941-902, RJ, Brazil
| | - Marta H. Branquinha
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, 21941-902, RJ, Brazil
- Rede Micologia RJ – Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
| | - André L.S. Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, 21941-902, RJ, Brazil
- Rede Micologia RJ – Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Bioquímica (PPGBq), Instituto de Química (IQ), Universidade Federal do Rio de Janeiro (UFRJ), Brazil
| |
Collapse
|
8
|
Mello TP, Barcellos IC, Lackner M, Branquinha MH, Santos ALS. Scedosporium/Lomentospora Species Induce the Production of Siderophores by Pseudomonas aeruginosa in a Cystic Fibrosis Mimic Environment. J Fungi (Basel) 2023; 9:jof9050502. [PMID: 37233213 DOI: 10.3390/jof9050502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/22/2023] [Accepted: 04/18/2023] [Indexed: 05/27/2023] Open
Abstract
Over the last years, the interkingdom microbial interactions concerning bacteria and fungi cohabiting and/or responsible for human pathologies have been investigated. In this context, the Gram-negative bacterium Pseudomonas aeruginosa and fungal species belonging to the Scedosporium/Lomentospora genera are widespread, multidrug-resistant, emergent, opportunistic pathogens that are usually co-isolated in patients with cystic fibrosis. The available literature reports that P. aeruginosa can inhibit the in vitro growth of Scedosporium/Lomentospora species; however, the complex mechanisms behind this phenomenon are mostly unknown. In the present work, we have explored the inhibitory effect of bioactive molecules secreted by P. aeruginosa (3 mucoid and 3 non-mucoid strains) on S. apiospermum (n = 6 strains), S. minutisporum (n = 3), S. aurantiacum (n = 6) and L. prolificans (n = 6) under cultivation in a cystic fibrosis mimic environment. It is relevant to highlight that all bacterial and fungal strains used in the present study were recovered from cystic fibrosis patients. The growth of Scedosporium/Lomentospora species was negatively affected by the direct interaction with either mucoid or non-mucoid strains of P. aeruginosa. Moreover, the fungal growth was inhibited by the conditioned supernatants obtained from bacteria-fungi co-cultivations and by the conditioned supernatants from the bacterial pure cultures. The interaction with fungal cells induced the production of pyoverdine and pyochelin, 2 well-known siderophores, in 4/6 clinical strains of P. aeruginosa. The inhibitory effects of these four bacterial strains and their secreted molecules on fungal cells were partially reduced with the addition of 5-flucytosine, a classical repressor of pyoverdine and pyochelin production. In sum, our results demonstrated that distinct clinical strains of P. aeruginosa can behave differently towards Scedosporium/Lomentospora species, even when isolated from the same cystic fibrosis patient. Additionally, the production of siderophores by P. aeruginosa was induced when co-cultivated with Scedosporium/Lomentospora species, indicating competition for iron and deprivation of this essential nutrient, leading to fungal growth inhibition.
Collapse
Affiliation(s)
- Thaís P Mello
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
| | - Iuri C Barcellos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Maracanã, Rio de Janeiro 20270-021, RJ, Brazil
| | - Michaela Lackner
- Institute for Hygiene and Medical Microbiology, Medical University of Innsbruck, Schöpfstrasse 41, 6020 Innsbruck, Austria
| | - Marta H Branquinha
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
- Rede Micologia RJ-Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 21941-902, RJ, Brazil
| | - André L S Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
- Rede Micologia RJ-Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 21941-902, RJ, Brazil
| |
Collapse
|
9
|
Mello TP, Barcellos IC, Aor AC, Branquinha MH, Santos ALS. Extracellularly Released Molecules by the Multidrug-Resistant Fungal Pathogens Belonging to the Scedosporium Genus: An Overview Focused on Their Ecological Significance and Pathogenic Relevance. J Fungi (Basel) 2022; 8:1172. [PMID: 36354939 PMCID: PMC9693033 DOI: 10.3390/jof8111172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 09/10/2024] Open
Abstract
The multidrug-resistant species belonging to the Scedosporium genus are well recognized as saprophytic filamentous fungi found mainly in human impacted areas and that emerged as human pathogens in both immunocompetent and immunocompromised individuals. It is well recognized that some fungi are ubiquitous organisms that produce an enormous amount of extracellular molecules, including enzymes and secondary metabolites, as part of their basic physiology in order to satisfy their several biological processes. In this context, the molecules secreted by Scedosporium species are key weapons for successful colonization, nutrition and maintenance in both host and environmental sites. These biologically active released molecules have central relevance on fungal survival when colonizing ecological places contaminated with hydrocarbons, as well as during human infection, particularly contributing to the invasion/evasion of host cells and tissues, besides escaping from the cellular and humoral host immune responses. Based on these relevant premises, the present review compiled the published data reporting the main secreted molecules by Scedosporium species, which operate important physiopathological events associated with pathogenesis, diagnosis, antimicrobial activity and bioremediation of polluted environments.
Collapse
Affiliation(s)
- Thaís P. Mello
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil
| | - Iuri C. Barcellos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil
| | - Ana Carolina Aor
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil
| | - Marta H. Branquinha
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil
- Rede Micologia RJ—Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 21941-901, Brazil
| | - André L. S. Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil
- Rede Micologia RJ—Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 21941-901, Brazil
| |
Collapse
|
10
|
Mello TP, Oliveira SSC, Branquinha MH, Santos ALS. Decoding the antifungal resistance mechanisms in biofilms of emerging, ubiquitous and multidrug-resistant species belonging to the Scedosporium/Lomentospora genera. Med Mycol 2022; 60:6596289. [PMID: 35641191 DOI: 10.1093/mmy/myac036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/14/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
The opportunistic filamentous fungi belonging to the Scedosporium and Lomentospora genera are highly tolerant to all classes of available antifungal drugs. Moreover, the mature biofilm formed by these fungi presents higher antifungal resistance when compared to planktonic cells. Nevertheless, the resistance mechanisms developed by the biofilm lifestyle are not completely elucidated. In the current study, we have investigated the mainly known resistance mechanisms to azoles (voriconazole and fluconazole) and polyenes (amphotericin B - AMB) in S. apiospermum, S. minutisporum, S. aurantiacum, and L. prolificans (formerly S. prolificans) biofilms. Both classes of antifungals can physically bind to the extracellular matrix of mature biofilms, preventing the drugs from reaching their targets on biofilm-forming cells, which precludes their activity and toxicity. In addition, the activity of efflux pumps, measured by Rhodamine 6 G, was increased along the maturation of the biofilm. The efflux pump's inhibition by L-Phe-L-Arg-β-naphthylamide culminated in a 2- to 16-fold increase in azole susceptibility in conidial cells, but not in mature biofilms. Finally, we demonstrated by using specific inhibitors that in conidia, but not in biofilms, AMB induced the production of reactive oxygen species through the activity of the oxidative phosphorylation system (complex I to IV and alternative oxidases). However, the cellular redox imbalance caused by AMB was well coped with the high activity of antioxidative enzymes, such as superoxide dismutase and catalase. Altogether, our results revealed that Scedosporium/Lomentospora biofilm resistance occurs through various mechanisms that operate concomitantly, which could explain the huge challenge in the clinical treatment of scedosporiosis/lomentosporiosis.
Collapse
Affiliation(s)
- Thaís P Mello
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Simone S C Oliveira
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Marta H Branquinha
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.,Rede Micologia RJ - Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ)
| | - André L S Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.,Rede Micologia RJ - Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ).,Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), Brazil
| |
Collapse
|
11
|
Activity of Amphotericin B Formulations and Voriconazole, alone or in combination, against Biofilms of Scedosporium and Fusarium spp. Antimicrob Agents Chemother 2021; 65:e0063821. [PMID: 34370583 DOI: 10.1128/aac.00638-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Scedosporium and Fusarium species are emerging opportunistic pathogens, causing invasive fungal diseases in humans, particularly in immunocompromised patients. Biofilm-related infections are associated with increased morbidity and mortality. We herein assessed the ability of Scedosporium apiospermum (SA) and Fusarium solani species complex (FSSC) isolates to form biofilms and evaluated the efficacy of deoxycholate amphotericin B (D-AMB), liposomal amphotericin B (L-AMB) and voriconazole (VRC), alone or in combination, against mature biofilms. Biofilm formation was assessed by safranin staining and spectrophotometric measurement of optical density. Planktonic and biofilm damage was assessed by XTT reduction assay. Planktonic cell and biofilm MIC50's were determined as the minimum concentrations that caused ≥50% fungal damage compared to untreated controls. The combined activity of L-AMB (0.5-32 mg/L) with VRC (0.125-64 mg/L) against biofilms was determined by the checkerboard microdilution method and analyzed by the Bliss independence model. Biofilm MIC50's of D-AMB and L-AMB against SA isolates were 1 and 2 mg/L and against FSSC isolates were 0.5 and 1 mg/L, respectively. Biofilm MIC50's of VRC against SA and FSSC were 32 mg/L and >256 mg/L, respectively. Synergistic effects were observed at 2-4 mg/L of L-AMB combined with 4-16 mg/L of VRC against SA biofilms (mean ΔE±standard error: 17% ± 3.7%). Antagonistic interactions were found at 0.5-4 mg/L of L-AMB combined with 0.125-16 mg/L of VRC against FSSC isolates with -28% ± 2%. D-AMB and L-AMB were more efficacious against SA and FSSC biofilms than VRC.
Collapse
|