1
|
Moawad F, Pouliot R, Brambilla D. Dissolving microneedles in transdermal drug delivery: A critical analysis of limitations and translation challenges. J Control Release 2025:113794. [PMID: 40319916 DOI: 10.1016/j.jconrel.2025.113794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/25/2025] [Accepted: 04/28/2025] [Indexed: 05/07/2025]
Abstract
Microneedles (MNs) have emerged as an innovative approach for transdermal drug delivery, offering an efficient and minimally invasive alternative to conventional injections and oral delivery systems. While their potential has been widely recognized and extensively studied, the translation of MN technology into clinical practice remains limited. Despite the vast amount of published research, much of it involves over-complexification without addressing the core barriers to practical application. For example, dissolving/degradable MNs face key limitations such as poor drug loading capacity, low dosing consistency, and challenges in delivering effective therapeutic concentrations. These constraints restrict their utility to niche applications, such as vaccination or delivering potent drugs that require minimal doses. Additionally, the lack of standardized quality control measures, the complex manufacturing processes, and the high costs associated specifically with sterile/aseptic production further impede clinical translation. Regulatory frameworks for MNs remain vague, slowing the development of products that meet approval standards. This review critically examines the fundamental barriers to dissolving/degradable MN commercialization, as the most studied type of MN, while exploring promising strategies to overcome them. Advances in formulation science, fabrication techniques, and material engineering have demonstrated potential in enhancing drug loading efficiency and delivery consistency. Moreover, the establishment of clearer regulatory guidelines and scalable production strategies could significantly accelerate the commercialization of MN technology. By shifting focus toward pragmatic and clinically relevant solutions, this review aims to bridge the gap between research innovations and real-world applications, paving the way for broader implementation of MN technology in medicine.
Collapse
Affiliation(s)
- Fatma Moawad
- Faculté de Pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, Québec H3T 1J4, Canada; Faculty of Pharmacy, Beni-Suef University, Beni-Suef 625617, Egypt
| | - Roxane Pouliot
- Faculté de Pharmacie, Université Laval, Québec G1V 0A6, Canada
| | - Davide Brambilla
- Faculté de Pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, Québec H3T 1J4, Canada.
| |
Collapse
|
2
|
Fuhrer M, Zampoli M, Abriel H. Diagnosing cystic fibrosis in low- and middle-income countries: challenges and strategies. Orphanet J Rare Dis 2024; 19:482. [PMID: 39707455 DOI: 10.1186/s13023-024-03506-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Cystic Fibrosis is caused by recessively inherited variants of the cystic fibrosis transmembrane regulator. It is associated with diverse clinical presentations that can affect the respiratory, digestive, and reproductive systems and inhibit nutrient absorption and growth. MAIN BODY The current estimation of people affected by Cystic Fibrosis is likely underestimated as this disease remains undiagnosed in countries with limited diagnostic capacity. Recent evidence indicates that Cystic Fibrosis is more common than initially thought and is likely underreported in low- and middle-income countries. The sweat chloride test remains the gold standard for diagnosing Cystic Fibrosis. However, the costs of commercially available instruments, consumables, and laboratory reagents remain relatively high for widespread implementation in low- and middle-income countries. CONCLUSION Alternative, cost-effective, and simpler approaches to sweat electrolyte measurement, may present more feasible options for CF diagnosis in the setting of low- and middle-income countries. Novel low-cost, point-of-care innovations for measuring sweat chloride should be explored and further validated as suitable alternatives. It will be important to consider how to implement these options and adjust the diagnostic algorithm to meet the needs of low- and middle-income countries. Future Cystic Fibrosis research in low- and middle-income countries should focus on finding a lower-cost and resource-intensive pathway for CF screening and diagnosis to improve its availability.
Collapse
Affiliation(s)
- Michèle Fuhrer
- Ion Channels and Channelopathies Laboratory, Institute for Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, Bern, CH-3012, Switzerland.
| | - Marco Zampoli
- Department of Paediatrics and Child Health Division of Paediatric Pulmonology, Red Cross War Memorial Children's Hospital, University of Cape Town, Rondebosch, Cape Town, South Africa
| | - Hugues Abriel
- Ion Channels and Channelopathies Laboratory, Institute for Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, Bern, CH-3012, Switzerland.
| |
Collapse
|
3
|
Hoppe JE, Sjoberg J, Hong G, Poch K, Zemanick ET, Thee S, Edmondson C, Patel D, Sathe M, Borowitz D, Putman MS, Lechtzin N, Riekert KA, Basile M, Goss CH, Jarosz ME, Rosenfeld M. Remote endpoints for clinical trials in cystic fibrosis: Report from the U.S. CF foundation remote endpoints task force. J Cyst Fibros 2024; 23:725-733. [PMID: 38429150 DOI: 10.1016/j.jcf.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/18/2024] [Accepted: 02/19/2024] [Indexed: 03/03/2024]
Abstract
The COVID-19 pandemic necessitated a rapid shift in clinical research to perform virtual visits and remote endpoint assessments, providing a key opportunity to optimize the use of remote endpoints for clinical trials in cystic fibrosis. The use of remote endpoints could allow more diverse participation in clinical trials while minimizing participant burden but must be robustly evaluated to ensure adequate performance and feasibility. In response, the Cystic Fibrosis Foundation convened the Remote Endpoint Task Force (Supplemental Table 1), a multidisciplinary group of CF researchers with remote endpoint expertise and community members tasked to better understand the current and future use of remote endpoints for clinical research. Here, we describe the current use of remote endpoints in CF clinical research, address key unanswered questions regarding their use and feasibility, and discuss the next steps to determine clinical trial readiness.
Collapse
Affiliation(s)
- Jordana E Hoppe
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora CO, USA.
| | | | - Gina Hong
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia Pennsylvania, USA
| | - Katie Poch
- Department of Medicine, National Jewish Health, Denver CO, USA
| | - Edith T Zemanick
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora CO, USA
| | - Stephanie Thee
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Claire Edmondson
- Department of Paediatric Respiratory Medicine, Great Ormond Street Hospital, London WC1N3JH, USA
| | - Dhiren Patel
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Cardinal Glennon Children's Medical Center, Saint Louis University School of Medicine, St. Louis MO, USA
| | - Meghana Sathe
- Pediatric Gastroenterology and Nutrition, University of Texas Southwestern/Children's Health, Dallas Texas, USA
| | - Drucy Borowitz
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo New York, USA
| | - Melissa S Putman
- Division of Pediatric Endocrinology, Boston Children's Hospital, Boston MA, USA
| | - Noah Lechtzin
- Division of Pulmonary and Critical Care, Johns Hopkins University School of Medicine, Baltimore Maryland, USA
| | - Kristin A Riekert
- Division of Pulmonary and Critical Care, Johns Hopkins University School of Medicine, Baltimore Maryland, USA
| | - Melissa Basile
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset NY, USA
| | - Christopher H Goss
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington Medical Center, Seattle Washington, USA; Department of Pediatrics, University of Washington School of Medicine and Seattle Children's Research Institute, Seattle Washington, USA
| | | | - Margaret Rosenfeld
- Department of Pediatrics, University of Washington School of Medicine and Seattle Children's Research Institute, Seattle Washington, USA
| |
Collapse
|