1
|
Feng Y, Chen L, Wang X, Zhang H, Wang Q, Liu Y, Jin X, Yang M, Huang J, Ren Z. Analysis of maternal genetic structure of mitochondrial DNA control region from Tai-Kadai-speaking Buyei population in southwestern China. BMC Genomics 2024; 25:50. [PMID: 38212691 PMCID: PMC10782584 DOI: 10.1186/s12864-023-09941-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/26/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Even though the Buyei are a recognised ethnic group in southwestern China, there hasn't been much work done on forensic population genetics, notably using mitochondrial DNA. The sequences and haplogroups of mitochondrial DNA control regions of the Buyei peoples were studied to provide support for the establishment of a reference database for forensic DNA analysis in East Asia. METHODS AND RESULTS The mitochondrial DNA control region sequences of 200 Buyei individuals in Guizhou were investigated. The haplotype frequencies and haplogroup distribution of the Buyei nationality in Guizhou were calculated. At the same time, the paired Fst values of the study population and other populations around the world were computed, to explore their genetic polymorphism and population relationship. A total of 179 haplotypes were detected in the Buyei population, with frequencies of 0.005-0.015. All haplotypes were assigned to 89 different haplogroups. The haplotype diversity and random matching probability were 0.999283 and 0.0063, respectively. The paired Fst genetic distances and correlation p-values among the 54 populations revealed that the Guizhou Buyei was most closely related to the Henan Han and the Guizhou Miao, and closer to the Hazara population in Pakistan and the Chiang Mai population. CONCLUSIONS The study of mitochondrial DNA based on the maternal genetic structure of the Buyei nationality in Guizhou will benefit the establishment of an East Asian forensic DNA reference database and provide a reference for anthropological research in the future.
Collapse
Grants
- KY No. [2021]065 Guizhou Province Education Department, Characteristic Region Project, Qian Education
- [2020] 4Y057 Guizhou Scientific Support Project, Qian Science Support
- No. 82160324 National Natural Science Foundation of China
- No. 82160324 National Natural Science Foundation of China
- [2020]6012 Guizhou "Hundred" High-level Innovative Talent Project, Qian Science Platform Talents
- KF202009 Shanghai Key Lab of Forensic Medicine, Key Lab of Forensic Science, Ministry of Justice, China (Academy of Forensic Science), Open Project
- NO. [2016] 1345 Guizhou Engineering Technology Research Center Project, Qian High-Tech of Development and Reform Commission, NO. [2016] 1345
- [2020] 1Y353 Guizhou Science Project, Qian Science Foundation
- [2018] 5779-X Guizhou Scientific Cultivation Project, Qian Science Platform Talent
Collapse
Affiliation(s)
- Yuhang Feng
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Li Chen
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Xiaoxue Wang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Hongling Zhang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Qiyan Wang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Yubo Liu
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Xiaoye Jin
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Meiqing Yang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Jiang Huang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China.
| | - Zheng Ren
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China.
| |
Collapse
|
2
|
Ren Z, Feng Y, Zhang H, Wang Q, Yang M, Liu Y, Le C, Wang J, Huang J. Genetic analysis of the mitochondrial DNA control region in Tai-Kadai-speaking Dong population in southwest China. Ann Hum Biol 2022; 49:354-360. [PMID: 36190920 DOI: 10.1080/03014460.2022.2131334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
BACKGROUND Dong people in Southwest China are officially recognised as an ethnic group, but there has been a lack of population genetic research on this group, especially based on mitochondrial DNA data. AIM To study the sequences and haplogroups of the mitochondrial DNA control region in a typical Dong population, and to provide help for the construction of a forensic mitochondrial DNA analysis reference database in East Asia. SUBJECTS AND METHODS The sequences of the mitochondrial DNA control region were analysed in 200 individuals of Dong in Guizhou. The haplotype frequencies, haplogroup distribution and paired Fst values of Guizhou Dong and 51 other populations in the world were calculated and explained to explore the genetic polymorphism and population relationships. RESULTS A total of 180 haplotypes were detected, with frequencies of 0.005-0.02. All haplotypes were assigned to 97 different haplogroups. The haplotype diversity and random matching probability were 0.998643 and 0.00635, respectively. The paired Fst values and correlation p values of 52 populations showed that the Guizhou Dong had the closest genetic relationship with the Henan Han and the Guizhou Miao in China, and were closest to the Punjab population in Pakistan and the Kashmiri population when compared with the world populations. CONCLUSIONS Our study was based on the matrilineal genetic structure of Guizhou Dong to study mitochondrial DNA, which was helpful to promote the establishment of the forensic DNA reference database in East Asia and provide reference for anthropological research.
Collapse
Affiliation(s)
- Zheng Ren
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, P. R. China
| | - Yuhang Feng
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, P. R. China
| | - Hongling Zhang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, P. R. China
| | - Qiyan Wang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, P. R. China
| | - Meiqing Yang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, P. R. China
| | - Yubo Liu
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, P. R. China
| | - Cuiyun Le
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, P. R. China
| | - Jie Wang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, P. R. China
| | - Jiang Huang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, P. R. China
| |
Collapse
|
3
|
Halilović E, Ahmić A, Kalajdžić A, Ismailović A, Čakar J, Lasić L, Pilav A, Džehverović M, Pojskić N. Paternal genetic structure of the Bosnian-Herzegovinian Roma: A Y-chromosomal STR study. Am J Hum Biol 2022; 34:e23719. [PMID: 34985162 DOI: 10.1002/ajhb.23719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 12/12/2021] [Accepted: 12/20/2021] [Indexed: 01/23/2023] Open
Abstract
OBJECTIVES Studies indicate the complex nature of the genetic structure of the European Roma which has been shaped by different effects of their demographic history, while preserving their ancestral Indian origin. The primary aims of this study were to present for the first time the paternal profiles of the Roma from Bosnia and Herzegovina based on the data from Y-chromosome STR loci, identify the components of non-Roma paternal gene flow into the Roma, and evaluate the genetic relationships with other European Roma populations. MATERIALS AND METHODS In this study, 110 DNA samples of unrelated males from Roma populations residing in different regions of Bosnia and Herzegovina were genotyped using the 23 Y-STR loci included in the PowerPlex Y23 system. RESULTS The analysis of the genetic structure of the Bosnian-Herzegovinian Roma revealed intra-country population substructuring and indicated differing genetic affinities between the Bosnian-Herzegovinian Roma and other European Roma populations. The paternal genetic structure of the Bosnian-Herzegovinian Roma has two components: an ancestral component represented by haplogroup H1a1a-M82, and European component presented by haplogroups I1-M253, I2a1a2b-L621, J2a1a-L26, J2a1a1a2b2a3~Z7671, J2b2a-M241, G2a2b2a1a1b-L497, and E1b1b-M215. CONCLUSION Genetic relations between the Bosnian-Herzegovinian Roma and other European Roma are shaped by different influences on their demographic history. The data suggest that the paternal gene pool of the Roma from Bosnia and Herzegovina might be a consequence of an early separation of the proto-Roma population and the later gene flow as well as factors of the isolation that accompany the Roma populations in some Bosnian-Herzegovinian regions.
Collapse
Affiliation(s)
- Emir Halilović
- Department of Biology, Faculty of Natural Sciences, University of Tuzla, Tuzla, Bosnia and Herzegovina
| | - Adisa Ahmić
- Department of Biology, Faculty of Natural Sciences, University of Tuzla, Tuzla, Bosnia and Herzegovina
| | - Abdurahim Kalajdžić
- Institute for Genetic Engineering and Biotechnology, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Anel Ismailović
- Department of Biology, Faculty of Natural Sciences, University of Tuzla, Tuzla, Bosnia and Herzegovina
| | - Jasmina Čakar
- Institute for Genetic Engineering and Biotechnology, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Lejla Lasić
- Institute for Genetic Engineering and Biotechnology, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Amela Pilav
- Institute for Genetic Engineering and Biotechnology, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Mirela Džehverović
- Institute for Genetic Engineering and Biotechnology, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Naris Pojskić
- Institute for Genetic Engineering and Biotechnology, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
4
|
Feng Y, Zhang H, Wang Q, Yang M, Liu Y, Wang Jie, Huang J, Ren Z. The mitochondrial DNA control region sequences from the Chinese Sui population of southwestern China. Ann Hum Biol 2021; 48:635-640. [PMID: 34663140 DOI: 10.1080/03014460.2021.1994649] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Sui people are officially recognised people living in southwest China, but there has been a lack of genetic research, especially based on mitochondrial DNA data. AIM To study the sequences and haplogroups of the mitochondrial DNA control region in a typical Sui population, with the aim of helping to promote the establishment of a forensic DNA analysis reference database in East Asia. SUBJECTS AND METHODS We analysed 201 Sui individuals and observed the sequences of the mitochondrial DNA control region. We calculated and explained the haplotype frequencies, haplogroup distribution and pairwise Fst values between the Sui and 47 other populations in the world, in order to explore genetic polymorphisms and population relationships. RESULTS 161 haplotypes were found in the Sui population, with frequencies of 0.0049-0.0199. All samples were assigned to 80 different haplogroups. The haplotype diversity and random matching probability were 0.999938 and 0.024729, respectively. The pairwise Fst values and correlation p-values of 48 populations showed that the Sui population was most closely related to the Miao population in Guizhou and the Han population in Henan, and closer to the Punjab population and Pukhtunkhwa population in Pakistan, and was significantly different from the other 43 groups. Compared with the other 43 groups, it is relatively isolated. CONCLUSION Our results show that the study of mitochondrial DNA based on the analysis of matrilineal genetic structure of the Sui population can help to promote the establishment of a forensic DNA reference database in East Asia and provide reference for future anthropological research.
Collapse
Affiliation(s)
- Yuhang Feng
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Hongling Zhang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Qiyan Wang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Meiqing Yang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Yubo Liu
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Wang Jie
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Jiang Huang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Zheng Ren
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550004, Guizhou, China
| |
Collapse
|
5
|
Analysis of the mitochondrial CYTB gene sequence in human populations of northeastern Bosnia. ANTHROPOLOGICAL REVIEW 2019. [DOI: 10.2478/anre-2019-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study offers the first report on variation sequence of the mitochondrial cytochrome b (MTCYTB) gene in populations from Bosnia (northeastern Bosnia). This study was designed on the analysis of the genetic diversity of two populations of different cultural-anthropological and genetic origin, Roma population and native/non-Roma population. The main aim of our study was to estimate the usefulness of the CYTB sequence in the analysis of genetic categorization of different populations and intergroup diversity, as well as to provide some additional information on haplogroup-associated polymorphisms within the CYTB region in defining haplogroup status. Estimation of the genetic diversity was done using intra and intergroup genetic indices. The population-specific polymorphisms have been found in both categories of the populations. The results of the analysis of genetic differentiation show significant pairwise Fst differences between the Romani and native populations. Also, registered significant genetic differentiation is illustrated on the level of genetic variation between subpopulations of the Roma and non-Roma origin. The important result in our study is the confirmation of the significance of the triad of polymorphisms T14783C-G15043A-G15301A, indicating the influence of Asian component of the maternal gene pool on the genetic structure of the studied population of the Roma. Our data show that the haplogroup polymorphisms exist in the CYTB region and can provide useful information on the haplogroups that were defined only by the control region of the mtDNA. The results of this study indicate the region of CYTB gene can be a benefit in providing some additional information in the analysis of genetic structure of human populations and can be additionally applied in population studies.
Collapse
|