1
|
Ahmad-Hanafi S, Zulkifli I, Ramiah SK, Chung ELT, Kamil R, Sazili AQ, Mashitah J. Prenatal auditory stimulation and impacts on physiological response to feed restriction in broiler chickens at market age. Poult Sci 2024; 103:103948. [PMID: 39127008 PMCID: PMC11367141 DOI: 10.1016/j.psj.2024.103948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 08/12/2024] Open
Abstract
Feed restriction could induce physiological stress in broiler chickens, leading to welfare issues. Prenatal stimulation could improve stress-coping mechanisms in poultry. The present study aimed to elucidate the effects of subjecting developing embryos to auditory stimulation on physiological stress response to feed restriction in broiler chickens at market age. A total of 423 hatching eggs of Cobb 500 (Gallus domesticus) were subjected to the following auditory treatments: 1) no additional sound treatment other than the background sound of the incubator's compressors at 40 dB (CONTROL), 2) exposure to pre-recorded traffic noise at 90 dB (NOISE), and 3) exposure to Mozart's Sonata for Two Pianos in D Major, K 488 at 90 dB) (MUSIC). The NOISE and MUSIC treatments were for 20 min/h for 24 h (a total of 8 h/d), starting from embryonic days (ED) 12 to hatching. On d 42, an equal number of birds from each prenatal auditory stimulation (PAS) group were subjected to either ad libitum feeding (AL) or 30-h of feed restriction (FR) in a completely randomised design. The FR chickens exhibited significantly higher serum levels of corticosterone (CORT), and heat shock protein (HSP) 70 compared to those of AL. Prenatal auditory stimulation, particularly NOISE, led to lower serum levels of CORT and alpha-1-acid glycoprotein (AGP) levels compared to the CONTROL group. Additionally, NOISE significantly increased brain mRNA glucocorticoid receptor and HSP70 gene expression. The cecal population of E. coli and Lactobacillus spp. was not significantly affected by prenatal auditory stimulation. In conclusion, our findings suggest that prenatal auditory stimulation, particularly NOISE, positively impacts broiler chickens' ability to cope with feed restriction.
Collapse
Affiliation(s)
- S Ahmad-Hanafi
- School of Animal Science, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut, 22200, Terengganu, Malaysia; Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia UPM, Serdang, 43400, Selangor, Malaysia
| | - I Zulkifli
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia UPM, Serdang, 43400, Selangor, Malaysia; Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia UPM, Serdang, 43400, Selangor, Malaysia.
| | - S K Ramiah
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia UPM, Serdang, 43400, Selangor, Malaysia
| | - E L T Chung
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia UPM, Serdang, 43400, Selangor, Malaysia; Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia UPM, Serdang, 43400, Selangor, Malaysia
| | - R Kamil
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia UPM, Serdang, 43400, Selangor, Malaysia; Laboratory of Computational Statistics and Operations Research, Institute for Mathematical Research, Universiti Putra Malaysia UPM, Serdang, 43400, Selangor, Malaysia
| | - A Q Sazili
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia UPM, Serdang, 43400, Selangor, Malaysia; Halal Products Research Institute, Putra Infoport, Universiti Putra Malaysia, Selangor, Malaysia
| | - J Mashitah
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia UPM, Serdang, 43400, Selangor, Malaysia; Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia UPM, Serdang, 43400, Selangor, Malaysia
| |
Collapse
|
2
|
Abstract
In recent years, the impact of prenatal sound on development, notably for programming individual phenotypes for postnatal conditions, has increasingly been revealed. However, the mechanisms through which sound affects physiology and development remain mostly unexplored. Here, I gather evidence from neurobiology, developmental biology, cellular biology and bioacoustics to identify the most plausible modes of action of sound on developing embryos. First, revealing often-unsuspected plasticity, I discuss how prenatal sound may shape auditory system development and determine individuals' later capacity to receive acoustic information. I also consider the impact of hormones, including thyroid hormones, glucocorticoids and androgen, on auditory plasticity. Second, I review what is known about sound transduction to other - non-auditory - brain regions, and its potential to input on classical developmental programming pathways. Namely, the auditory pathway has direct anatomical and functional connectivity to the hippocampus, amygdala and/or hypothalamus, in mammals, birds and anurans. Sound can thus trigger both immediate and delayed responses in these limbic regions, which are specific to the acoustic stimulus and its biological relevance. Third, beyond the brain, I briefly consider the possibility for sound to directly affect cellular functioning, based on evidence in earless organisms (e.g. plants) and cell cultures. Together, the multi-disciplinary evidence gathered here shows that the brain is wired to allow multiple physiological and developmental effects of sound. Overall, there are many unexplored, but possible, pathways for sound to impact even primitive or immature organisms. Throughout, I identify the most promising research avenues for unravelling the processes of acoustic developmental programming.
Collapse
Affiliation(s)
- Mylene M Mariette
- Doñana Biological Station EBD-CSIC, 41092 Seville, Spain
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia
| |
Collapse
|
3
|
Hanafi S, Zulkifli I, Ramiah S, Chung E, Kamil R, Awad E. Prenatal auditory stimulation induces physiological stress responses in developing embryos and newly hatched chicks. Poult Sci 2022; 102:102390. [PMID: 36608455 PMCID: PMC9826867 DOI: 10.1016/j.psj.2022.102390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/14/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Prenatal stress may evoke considerable physiological consequences on the developing poultry embryos and neonates. The present study aimed to determine prenatal auditory stimulation effects on serum levels of ceruloplasmin (CPN), alpha-1-acid glycoprotein (AGP), corticosterone (CORT), and heat shock protein 70 (Hsp70) regulations in developing chicken embryos and newly hatched chicks. Hatching eggs were subjected to the following auditory treatments; 1) control (no additional sound treatment other than the background sound of the incubator's compressors at 40 dB), 2) noise exposure (eggs were exposed to pre-recorded traffic noise at 90 dB) (NOISE), and 3) music exposure (eggs were exposed to Mozart's Sonata for Two Pianos in D Major, K 488 at 90 dB) (MUSIC). The NOISE and MUSIC treatments were for 20 min/h for 24 h (a total of 8 h/d), starting from embryonic days (ED) 12 to hatching. The MUSIC (1.37 ± 0.1 ng/mL) and NOISE (1.49 ± 0.2 ng/mL) treatments significantly elevated CPN at ED 15 compared to the Control (0.82 ± 0.04 ng/mL) group and post-hatch day 1 (Control, 1.86 ± 0.2 ng/mL; MUSIC, 2.84 ± 0.4 ng/mL; NOISE, 3.04 ± 0.3 ng/mL), AGP at ED 15 (Control, 39.1 ± 7.1 mg/mL; MUSIC, 85.5 ± 12.9 mg/mL; NOISE, 85.4 ± 15.1 mg/mL) and post-hatch day 1 (Control, 20.4 ± 2.2 mg/mL; MUSIC, 30.5 ± 4.7 mg/mL; NOISE, 30.3 ± 1.4 mg/mL). CORT significantly increased at ED 15 in both MUSIC (9.024 ± 1.4 ng/mL) and NOISE (12.15 ± 1.6 ng/mL) compared to the Control (4.39 ± 0.7 ng/mL) group. On the other hand, MUSIC exposed embryos had significantly higher Hsp70 expression than their Control and NOISE counterparts at ED 18 (Control, 12.9 ± 1.2 ng/mL; MUSIC, 129.6 ± 26.4 ng/mL; NOISE, 13.3 ± 2.3 ng/mL) and post-hatch day 1 (Control, 15.2 ± 1.7 ng/mL; MUSIC, 195.5 ± 68.5 ng/mL; NOISE, 13.2 ± 2.7 ng/mL). In conclusion, developing chicken embryos respond to auditory stimulation by altering CPN, AGP, CORT, and Hsp70. The alterations of these analytes could be important in developing embryos and newly hatched chicks to cope with stress attributed to auditory stimulation.
Collapse
Affiliation(s)
- S.A. Hanafi
- School of Animal Science, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut 22200, Terengganu, Malaysia,Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
| | - I. Zulkifli
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia,Department of Animal Science, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia,Corresponding author:
| | - S.K. Ramiah
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
| | - E.L.T. Chung
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia,Department of Animal Science, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
| | - R. Kamil
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia,Laboratory of Computational Statistics and Operations Research, Institute for Mathematical Research, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - E.A. Awad
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia,Department of Poultry Production, University of Khartoum, Khartoum North 13314, Sudan
| |
Collapse
|
4
|
Billig AJ, Lad M, Sedley W, Griffiths TD. The hearing hippocampus. Prog Neurobiol 2022; 218:102326. [PMID: 35870677 PMCID: PMC10510040 DOI: 10.1016/j.pneurobio.2022.102326] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/08/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022]
Abstract
The hippocampus has a well-established role in spatial and episodic memory but a broader function has been proposed including aspects of perception and relational processing. Neural bases of sound analysis have been described in the pathway to auditory cortex, but wider networks supporting auditory cognition are still being established. We review what is known about the role of the hippocampus in processing auditory information, and how the hippocampus itself is shaped by sound. In examining imaging, recording, and lesion studies in species from rodents to humans, we uncover a hierarchy of hippocampal responses to sound including during passive exposure, active listening, and the learning of associations between sounds and other stimuli. We describe how the hippocampus' connectivity and computational architecture allow it to track and manipulate auditory information - whether in the form of speech, music, or environmental, emotional, or phantom sounds. Functional and structural correlates of auditory experience are also identified. The extent of auditory-hippocampal interactions is consistent with the view that the hippocampus makes broad contributions to perception and cognition, beyond spatial and episodic memory. More deeply understanding these interactions may unlock applications including entraining hippocampal rhythms to support cognition, and intervening in links between hearing loss and dementia.
Collapse
Affiliation(s)
| | - Meher Lad
- Translational and Clinical Research Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - William Sedley
- Translational and Clinical Research Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - Timothy D Griffiths
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK; Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, UK; Human Brain Research Laboratory, Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, USA
| |
Collapse
|
5
|
Cho H, Park HJ, Choi JH, Nam MH, Jeong JS, Seo YK. Sound affects the neuronal maturation of neuroblastoma cells and the repair of damaged tissues. ELECTRON J BIOTECHN 2022. [DOI: 10.1016/j.ejbt.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
6
|
Plasticity in the hippocampal formation of shorebirds during the wintering period: Stereological analysis of parvalbumin neurons in Actitis macularius. Learn Behav 2021; 50:45-54. [PMID: 34244975 DOI: 10.3758/s13420-021-00473-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2021] [Indexed: 11/08/2022]
Abstract
The number of parvalbumin neurons can be modified by social, multisensory, and cognitive stimuli in both mammals and birds, but nothing is known about their plasticity in long-distance migratory shorebirds. Here, in the spotted sandpiper (Actitis macularius), we investigated the plasticity of parvalbumin neurons of two brain areas during this species' wintering period at a lower latitude. We compared individuals in a nonmigratory rest period (November-January) and premigration (May-July) period. We used parvalbumin as a marker for counting a subpopulation of inhibitory neurons in the hippocampal formation (HF), with the magnocellular nucleus of the tectal isthmus (IMC) as a control area. Because the HF is involved in learning and memory and social interaction and the IMC is essential for control of head, neck, and eye movements, we hypothesized that parvalbumin neurons would increase in the HF and remain unchanged in the IMC. We used an optical fractionator to estimate cell numbers. Compared with the nonmigratory rest birds, parvalbumin neuron count estimates in the premigration birds increased significantly in the HF but remained unchanged in IMC. We suggest that the greater number of parvalbuminergic neurons in the HF of A. macularius in the premigration period represents adaptive circuitry changes involved in the migration back to reproductive niches in the northern hemisphere.
Collapse
|
7
|
Morandi-Raikova A, Danieli K, Lorenzi E, Rosa-Salva O, Mayer U. Anatomical asymmetries in the tectofugal pathway of dark-incubated domestic chicks: Rightwards lateralization of parvalbumin neurons in the entopallium. Laterality 2021; 26:163-185. [DOI: 10.1080/1357650x.2021.1873357] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
| | - Krubeal Danieli
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Italy
| | - Elena Lorenzi
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Italy
| | - Orsola Rosa-Salva
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Italy
| | - Uwe Mayer
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Italy
| |
Collapse
|
8
|
Long-term effects of prenatal sound experience on songbird behavior and their relation to song learning. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-020-02939-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
9
|
Chaudhury S, Sharma V, Kumar V, Nag TC, Wadhwa S. Activity-dependent synaptic plasticity modulates the critical phase of brain development. Brain Dev 2016; 38:355-63. [PMID: 26515724 DOI: 10.1016/j.braindev.2015.10.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/21/2015] [Accepted: 10/10/2015] [Indexed: 12/28/2022]
Abstract
Plasticity or neuronal plasticity is a unique and adaptive feature of nervous system which allows neurons to reorganize their interactions in response to an intrinsic or extrinsic stimulation and shapes the formation and maintenance of a functional neuronal circuit. Synaptic plasticity is the most important form of neural plasticity and plays critical role during the development allowing the formation of precise neural connectivity via the process of pruning. In the sensory systems-auditory and visual, this process is heavily dependent on the external cues perceived during the development. Environmental enrichment paradigms in an activity-dependent manner result in early maturation of the synapses and more efficient trans-synaptic signaling or communication flow. This has been extensively observed in the avian auditory system. On the other hand, stimuli results in negative effect can cause alterations in the synaptic connectivity and strength resulting in various developmental brain disorders including autism, fragile X syndrome and rett syndrome. In this review we discuss the role of different forms of activity (spontaneous or environmental) during the development of the nervous system in modifying synaptic plasticity necessary for shaping the adult brain. Also, we try to explore various factors (molecular, genetic and epigenetic) involved in altering the synaptic plasticity in positive and negative way.
Collapse
Affiliation(s)
- Sraboni Chaudhury
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Vikram Sharma
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Vivek Kumar
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tapas C Nag
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Shashi Wadhwa
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
10
|
Roy S, Sharma HP, Nag TC, Velpandian T, Upadhyay AD, Mathur R, Jain S. BDNF mediated activity dependent maturation of visual Wulst following prenatal repetitive auditory stimulation at a critical developmental period in domestic chicks (Gallus domesticus). Brain Res Bull 2014; 109:99-108. [PMID: 25305344 DOI: 10.1016/j.brainresbull.2014.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 09/14/2014] [Accepted: 10/02/2014] [Indexed: 10/24/2022]
Abstract
The developing visual circuitry attains its mature adult pattern through the process of activity-dependent refinement in which photic stimulation plays the major role. However, auditory stimulation can also facilitate the developing visual Wulst synaptic plasticity and postnatal perceptual behavior, though the underlying mechanism is unclear. We exposed the fertilized eggs of white Leghorn chickens during incubation to either species-specific calls or no sound for varying time periods depending on the functional development of the auditory and/or visual systems. The visual evoked potential (VEP) from the Wulst was recorded at embryonic days (E) 19, 20 and posthatch days (PH) 1-3, to assess functional maturation. A significant attenuation in latencies and higher amplitudes at PH1-3 in the stimulated groups that received exposure during visual system maturation, suggest beneficial effect of auditory inputs only during critical periods. Concomitant with this, there was a significant increase in the expression of BDNF and levels of neurotransmitters GABA, glutamate, norepinephrine and serotonin from E18 only in both hemispheres of the visual Wulst. A significant inter-hemispheric difference in expression was also found in all groups. These results suggest the role of BDNF in activity driven structural and functional maturation of the visual system following prenatal repetitive auditory stimulation.
Collapse
Affiliation(s)
- Saborni Roy
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India.
| | - Hanuman Prasad Sharma
- Department of Ocular Pharmacology & Pharmacy, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India.
| | - Tapas C Nag
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India.
| | - Thirumurthy Velpandian
- Department of Ocular Pharmacology & Pharmacy, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India.
| | - Ashish Datt Upadhyay
- Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, India.
| | - Rashmi Mathur
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India.
| | - Suman Jain
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
11
|
Prenatal music stimulation facilitates the postnatal functional development of the auditory as well as visual system in chicks (Gallus domesticus). J Biosci 2014; 39:107-17. [PMID: 24499795 DOI: 10.1007/s12038-013-9401-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Rhythmic sound or music is known to improve cognition in animals and humans. We wanted to evaluate the effects of prenatal repetitive music stimulation on the remodelling of the auditory cortex and visual Wulst in chicks. Fertilized eggs (0 day) of white leghorn chicken (Gallus domesticus) during incubation were exposed either to music or no sound from embryonic day 10 until hatching. Auditory and visual perceptual learning and synaptic plasticity, as evident by synaptophysin and PSD-95 expression, were done at posthatch days (PH) 1, 2 and 3. The number of responders was significantly higher in the music stimulated group as compared to controls at PH1 in both auditory and visual preference tests. The stimulated chicks took significantly lesser time to enter and spent more time in the maternal area in both preference tests. A significantly higher expression of synaptophysin and PSD-95 was observed in the stimulated group in comparison to control at PH1-3 both in the auditory cortex and visual Wulst. A significant inter-hemispheric and gender-based difference in expression was also found in all groups. These results suggest facilitation of postnatal perceptual behaviour and synaptic plasticity in both auditory and visual systems following prenatal stimulation with complex rhythmic music.
Collapse
|
12
|
Chaudhury S, Nag TC, Jain S, Wadhwa S. Role of sound stimulation in reprogramming brain connectivity. J Biosci 2014; 38:605-14. [PMID: 23938392 DOI: 10.1007/s12038-013-9341-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sensory stimulation has a critical role to play in the development of an individual. Environmental factors tend to modify the inputs received by the sensory pathway. The developing brain is most vulnerable to these alterations and interacts with the environment to modify its neural circuitry. In addition to other sensory stimuli, auditory stimulation can also act as external stimuli to provide enrichment during the perinatal period. There is evidence that suggests that enriched environment in the form of auditory stimulation can play a substantial role in modulating plasticity during the prenatal period. This review focuses on the emerging role of prenatal auditory stimulation in the development of higher brain functions such as learning and memory in birds and mammals. The molecular mechanisms of various changes in the hippocampus following sound stimulation to effect neurogenesis, learning and memory are described. Sound stimulation can also modify neural connectivity in the early postnatal life to enhance higher cognitive function or even repair the secondary damages in various neurological and psychiatric disorders. Thus, it becomes imperative to examine in detail the possible ameliorating effects of prenatal sound stimulation in existing animal models of various psychiatric disorders, such as autism.
Collapse
Affiliation(s)
- Sraboni Chaudhury
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India.
| | | | | | | |
Collapse
|
13
|
Sanyal T, Kumar V, Nag TC, Jain S, Sreenivas V, Wadhwa S. Prenatal loud music and noise: differential impact on physiological arousal, hippocampal synaptogenesis and spatial behavior in one day-old chicks. PLoS One 2013; 8:e67347. [PMID: 23861759 PMCID: PMC3702537 DOI: 10.1371/journal.pone.0067347] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 05/15/2013] [Indexed: 12/01/2022] Open
Abstract
Prenatal auditory stimulation in chicks with species-specific sound and music at 65 dB facilitates spatial orientation and learning and is associated with significant morphological and biochemical changes in the hippocampus and brainstem auditory nuclei. Increased noradrenaline level due to physiological arousal is suggested as a possible mediator for the observed beneficial effects following patterned and rhythmic sound exposure. However, studies regarding the effects of prenatal high decibel sound (110 dB; music and noise) exposure on the plasma noradrenaline level, synaptic protein expression in the hippocampus and spatial behavior of neonatal chicks remained unexplored. Here, we report that high decibel music stimulation moderately increases plasma noradrenaline level and positively modulates spatial orientation, learning and memory of one day-old chicks. In contrast, noise at the same sound pressure level results in excessive increase of plasma noradrenaline level and impairs the spatial behavior. Further, to assess the changes at the molecular level, we have quantified the expression of functional synapse markers: synaptophysin and PSD-95 in the hippocampus. Compared to the controls, both proteins show significantly increased expressions in the music stimulated group but decrease in expressions in the noise group. We propose that the differential increase of plasma noradrenaline level and altered expression of synaptic proteins in the hippocampus are responsible for the observed behavioral consequences following prenatal 110 dB music and noise stimulation.
Collapse
Affiliation(s)
- Tania Sanyal
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Vivek Kumar
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Tapas Chandra Nag
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Suman Jain
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Vishnu Sreenivas
- Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, India
| | - Shashi Wadhwa
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
- * E-mail:
| |
Collapse
|
14
|
Wadhwa S, Bhavnani EM, Wadhwa S. Expression of calcium-binding proteins in the chick auditory nuclei following prenatal auditory stimulation. J ANAT SOC INDIA 2013. [DOI: 10.1016/s0003-2778(13)80003-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Tong Q, Romanini C, Exadaktylos V, Bahr C, Berckmans D, Bergoug H, Eterradossi N, Roulston N, Verhelst R, McGonnell I, Demmers T. Embryonic development and the physiological factors that coordinate hatching in domestic chickens. Poult Sci 2013; 92:620-8. [DOI: 10.3382/ps.2012-02509] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
16
|
Sanyal T, Palanisamy P, Nag TC, Roy TS, Wadhwa S. Effect of prenatal loud music and noise on total number of neurons and glia, neuronal nuclear area and volume of chick brainstem auditory nuclei, field L and hippocampus: a stereological investigation. Int J Dev Neurosci 2013; 31:234-44. [PMID: 23466415 DOI: 10.1016/j.ijdevneu.2013.02.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 02/13/2013] [Accepted: 02/13/2013] [Indexed: 12/29/2022] Open
Abstract
The present study explores whether prenatal patterned and unpatterned sound of high sound pressure level (110 dB) has any differential effect on the morphology of brainstem auditory nuclei, field L (auditory cortex analog) and hippocampus in chicks (Gallus domesticus). The total number of neurons and glia, mean neuronal nuclear area and total volume of the brainstem auditory nuclei, field L and hippocampus of post-hatch day 1 chicks were determined in serial, cresyl violet-stained sections, using stereology software. All regions studied showed a significantly increased total volume with increase in total neuron number and mean neuronal nuclear area in the patterned music stimulated group as compared to control. Contrastingly the unpatterned noise stimulated group showed an attenuated volume with reduction in the total neuron number. The mean neuronal nuclear area was significantly reduced in the auditory nuclei and hippocampus but increased in the field L. Glial cell number was significantly increased in both experimental groups, being highest in the noise group. The brainstem auditory nuclei and field L showed an increase in glia to neuron ratio in the experimental groups as compared to control. In the hippocampus the ratio remained unaltered between control and music groups, but was higher in the noise group. It is thus evident that though the sound pressure level in both experimental groups was the same there were differential changes in the morphological parameters of the brain regions studied, indicating that the characteristics of the sound had a role in mediating these effects.
Collapse
Affiliation(s)
- Tania Sanyal
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India
| | | | | | | | | |
Collapse
|
17
|
Cortical GABAergic interneurons in cross-modal plasticity following early blindness. Neural Plast 2012; 2012:590725. [PMID: 22720175 PMCID: PMC3377178 DOI: 10.1155/2012/590725] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 04/04/2012] [Indexed: 11/30/2022] Open
Abstract
Early loss of a given sensory input in mammals causes anatomical and functional modifications in the brain via a process called cross-modal plasticity. In the past four decades, several animal models have illuminated our understanding of the biological substrates involved in cross-modal plasticity. Progressively, studies are now starting to emphasise on cell-specific mechanisms that may be responsible for this intermodal sensory plasticity. Inhibitory interneurons expressing γ-aminobutyric acid (GABA) play an important role in maintaining the appropriate dynamic range of cortical excitation, in critical periods of developmental plasticity, in receptive field refinement, and in treatment of sensory information reaching the cerebral cortex. The diverse interneuron population is very sensitive to sensory experience during development. GABAergic neurons are therefore well suited to act as a gate for mediating cross-modal plasticity. This paper attempts to highlight the links between early sensory deprivation, cortical GABAergic interneuron alterations, and cross-modal plasticity, discuss its implications, and further provide insights for future research in the field.
Collapse
|
18
|
Kauser H, Roy S, Pal A, Sreenivas V, Mathur R, Wadhwa S, Jain S. Prenatal complex rhythmic music sound stimulation facilitates postnatal spatial learning but transiently impairs memory in the domestic chick. Dev Neurosci 2011; 33:48-56. [PMID: 21212638 DOI: 10.1159/000322449] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 10/30/2010] [Indexed: 11/19/2022] Open
Abstract
Early experience has a profound influence on brain development, and the modulation of prenatal perceptual learning by external environmental stimuli has been shown in birds, rodents and mammals. In the present study, the effect of prenatal complex rhythmic music sound stimulation on postnatal spatial learning, memory and isolation stress was observed. Auditory stimulation with either music or species-specific sounds or no stimulation (control) was provided to separate sets of fertilized eggs from day 10 of incubation. Following hatching, the chicks at age 24, 72 and 120 h were tested on a T-maze for spatial learning and the memory of the learnt task was assessed 24 h after training. In the posthatch chicks at all ages, the plasma corticosterone levels were estimated following 10 min of isolation. The chicks of all ages in the three groups took less (p < 0.001) time to navigate the maze over the three trials thereby showing an improvement with training. In both sound-stimulated groups, the total time taken to reach the target decreased significantly (p < 0.01) in comparison to the unstimulated control group, indicating the facilitation of spatial learning. However, this decline was more at 24 h than at later posthatch ages. When tested for memory after 24 h of training, only the music-stimulated chicks at posthatch age 24 h took a significantly longer (p < 0.001) time to traverse the maze, suggesting a temporary impairment in their retention of the learnt task. In both sound-stimulated groups at 24 h, the plasma corticosterone levels were significantly decreased (p < 0.001) and increased thereafter at 72 h (p < 0.001) and 120 h which may contribute to the differential response in spatial learning. Thus, prenatal auditory stimulation with either species-specific or complex rhythmic music sounds facilitates spatial learning, though the music stimulation transiently impairs postnatal memory.
Collapse
Affiliation(s)
- H Kauser
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | | | | | | | |
Collapse
|
19
|
Harshaw C, Lickliter R. Biased embryos: Prenatal experience alters the postnatal malleability of auditory preferences in bobwhite quail. Dev Psychobiol 2010; 53:291-302. [PMID: 21400491 DOI: 10.1002/dev.20521] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2010] [Accepted: 11/04/2010] [Indexed: 11/06/2022]
Abstract
Many precocial birds show a robust preference for the maternal call of their own species before and after hatching. This differential responsiveness to species-specific auditory stimuli by embryos and neonates has been the subject of study for more than four decades, but much remains unknown about the dynamics of this ability. Gottlieb [Gottlieb [1971]. Development of species identification in birds: An enquiry into the prenatal determinants of perception. Chicago/London: University of Chicago Press.] demonstrated that prenatal exposure to embryonic vocalizations serves to canalize the formation of species-specific preferences in ducklings. Apart from this, little is known about the features of the developmental system that serve to canalize such species-typical preferences, on the one hand, and generate novel behavioral phenotypes, on the other. In the current study, we show that briefly exposing bobwhite quail embryos to a heterospecific Japanese quail (JQ) maternal call significantly enhanced their acquisition of a preference for that call when chicks were provided with subsequent postnatal exposure to the same call. This was true whether postnatal exposure involved playback of the maternal call contingent upon chick contact vocalizations or yoked, non-contingent exposure to the call. Chicks that received both passive prenatal and contingent postnatal exposure to the JQ maternal call redirected their species-typical auditory preference, showing a significant preference for JQ call over the call of their own species. In contrast, chicks receiving only prenatal or only postnatal exposure to the JQ call did not show this redirection of their auditory preference. Our results indicate that prenatal sensory stimulation can significantly bias postnatal responsiveness to social stimuli, thereby altering the course of early learning and memory.
Collapse
Affiliation(s)
- Christopher Harshaw
- Department of Psychology, Florida International University, Miami, FL 33199, USA.
| | | |
Collapse
|
20
|
Chaudhury S, Wadhwa S. Prenatal auditory stimulation alters the levels of CREB mRNA, p-CREB and BDNF expression in chick hippocampus. Int J Dev Neurosci 2009; 27:583-90. [PMID: 19559781 DOI: 10.1016/j.ijdevneu.2009.06.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2009] [Accepted: 06/17/2009] [Indexed: 01/23/2023] Open
Abstract
Prenatal auditory stimulation influences the development of the chick auditory pathway and the hippocampus showing an increase in various morphological parameters as well as expression of calcium-binding proteins. Calcium regulates the activity of cyclic adenosine monophosphate-response element binding (CREB) protein. CREB is known to play a role in development, undergo phosphorylation with neural activity as well as regulate transcription of BDNF. BDNF is important for the survival of neurons and regulates synaptic strength. Hence in the present study, we have evaluated the levels of CREB mRNA and protein along with p-CREB protein as well as BDNF mRNA and protein levels in the chick hippocampus at embryonic days (E) 12, E16, E20 and post-hatch day (PH) 1 following activation by prenatal auditory stimulation. Fertilized eggs were exposed to species-specific sound or sitar music (frequency range: 100-6300Hz) at 65dB levels for 15min/h over 24h from E10 till hatching. The control chick hippocampus showed higher CREB mRNA and p-CREB protein in the early embryonic stages, which later decline whereas BDNF mRNA and BDNF protein levels increase until PH1. The CREB mRNA and p-CREB protein were significantly increased at E12, E16 and PH1 in the auditory stimulated groups as compared to control group. A significant increase in the level of BDNF mRNA was observed from E12 and the protein expression from E16 onwards in both auditory stimulated groups. Therefore, enhanced phosphorylation of CREB during development following prenatal sound stimulation may be responsible for cell survival. Increased levels of p-CREB again at PH1 may trigger synthesis of proteins necessary for synaptic plasticity. Further, the increased levels of BDNF may also help in regulating synaptic plasticity.
Collapse
Affiliation(s)
- Sraboni Chaudhury
- Department of Anatomy, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | | |
Collapse
|
21
|
Buckiová D, Syka J. Calbindin and S100 protein expression in the developing inner ear in mice. J Comp Neurol 2009; 513:469-82. [PMID: 19226521 DOI: 10.1002/cne.21967] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Calbindin (CB) and S100 are calcium-binding proteins expressed in the inner ear in vertebrates. Information about their developmental roles is incomplete. This study investigated the expression patterns of CB and S100 in C3H mice using immunohistochemistry, from embryonic day 11 (E11) to postnatal day 10 (P10). CB was expressed in the otocyst and vestibulocochlear ganglion (VCG) from E11. In the cochlea at E17, CB immunoreactivity clearly labeled the VCG, the outer and inner hair cells, and the stria vascularis. CB staining was also present in the vestibular sensory cells, including their nerve fibers. Two days later, to this expression pattern was added the labeling of Kölliker's organ. Early postnatal CB expression encompassed VCG neurons, auditory hair cells, their afferent nerve fibers, and cells of the cochlear lateral wall. The first signs of S100 immunostaining of cochlear and vestibular epithelial cells appeared at E14. At E17 S100 immunoreactivity was found in a restricted expression pattern in the cochlea. Immunostaining was also present in the sacculus and utriculus and their afferent fibers. The Deiters', pillar and inner hair cells, and the VCG were S100-positive from E19. Postnatally, S100 staining also appeared in the inner hair cells and Deiters' cells, in some VCG neurons, and, in addition, in the spiral limbus, the spiral prominence, and the intermediate cells of the stria vascularis. This study demonstrates that the sites of CB and S100 expression in the mouse inner ear during embryonic and early postnatal development do not overlap and signal independent developmental patterns.
Collapse
Affiliation(s)
- Daniela Buckiová
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | | |
Collapse
|
22
|
Chaudhury S, Nag TC, Wadhwa S. Effect of prenatal auditory stimulation on numerical synaptic density and mean synaptic height in the posthatch Day 1 chick hippocampus. Synapse 2009; 63:152-9. [PMID: 19021205 DOI: 10.1002/syn.20585] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Previous studies on prenatal auditory stimulation by species-specific sound or sitar music showed enhanced morphological and biochemical changes in chick hippocampus, which plays an important role in learning and memory. Changes in the efficiency of synapses, synaptic morphology and de novo synapse formation affects learning and memory. Therefore, in the present study, we set out to investigate the mean synaptic density and mean synaptic height at posthatch Day 1 in dorsal and ventral part of chick hippocampus following prenatal auditory stimulation. Fertilized 0 day eggs of domestic chick incubated under normal conditions were exposed to patterned sounds of species-specific and sitar music at 65 dB levels for 15 min/h round the clock (frequency range: 100-6300 Hz) from embryonic Day 10 till hatching. The synapses identified under transmission electron microscope were estimated for their numerical density by physical disector method and also the mean synaptic height calculated. Our results demonstrate a significant increase in mean synaptic density with no alterations in the mean synaptic height following both types of auditory stimulation in the dorsal as well as ventral part of the hippocampus. The observed increase in mean synaptic density suggests enhanced synaptic substrate to strengthen hippocampal function.
Collapse
Affiliation(s)
- Sraboni Chaudhury
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India
| | | | | |
Collapse
|
23
|
Effect of gestational ethanol exposure on parvalbumin and calretinin expressing hippocampal neurons in a chick model of fetal alcohol syndrome. Alcohol 2009; 43:147-61. [PMID: 19251116 DOI: 10.1016/j.alcohol.2008.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 10/29/2008] [Accepted: 12/09/2008] [Indexed: 01/12/2023]
Abstract
Fetal alcohol syndrome (FAS), a condition occurring in some children of mothers who have consumed alcohol during pregnancy, is characterized by physical deformities and learning and memory deficits. The chick hippocampus, whose functions are controlled by interneurons expressing calcium-binding proteins parvalbumin (PV) and calretinin (CR), is involved in learning and memory mechanisms. Effects on growth and development and hippocampal morphology were studied in chick embryos exposed to 5% and 10% ethanol volume/volume (vol/vol) for 2 or 8 days of gestation. There was a significant dose-dependent reduction (P<.05) in body weight and mean number per section of PV and CR expressing hippocampal neurons in ethanol-exposed chicks, without alterations in neuronal nuclear size or hippocampal volume, compared appropriate controls. Moreover, when chicks exposed to 5% ethanol for 2 and 8 days of gestation were compared, no significant differences were found in body parameters or neuronal counts. Similarly, exposure to 10% ethanol did not induce any significant changes in chicks exposed for 2 or 8 gestational days. Thus, these results suggest that gestational ethanol exposure induces a reduction in the mean number per section of PV and CR expressing hippocampal neurons, and could be a possible mechanism responsible for learning and memory disorders in FAS.
Collapse
|
24
|
Zeng S, Lin Y, Yang L, Zhang X, Zuo M. Comparative analysis of neurogenesis between the core and shell regions of auditory areas in the chick (Gallus gallus domesticus). Brain Res 2008; 1216:24-37. [PMID: 18486109 DOI: 10.1016/j.brainres.2008.04.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2007] [Revised: 04/03/2008] [Accepted: 04/03/2008] [Indexed: 11/29/2022]
Abstract
Early embryogenesis can reflect constituting organizations and evolutionary origins of brain areas. To determine whether a clear core-versus-shell distinction of neurogenesis that occurs from the auditory midbrain to the telencephalon in the reptile also appears in the bird, a single dose of [(3)H]-thymidine was injected into chick (Gallus gallus domesticus) eggs at some successive embryonic days (E) (from E3 to E10). Towards the end of hatching, [(3)H]-thymidine labeling was examined, and the results were as follows: 1) Neuronal generation in the nucleus intercollicularis (ICo) (shell region) began at E3, whereas neurogenesis began at E4 in the nucleus mesencephalicus lateralis pars dorsalis (MLd) (core region); 2) Neurogenesis initiated at E3 in the nucleus ovoidalis (Ov) shell, but initiated at E4 in the rostral Ov core. In the medial or caudal Ov core, the percentage of heavily-labeled neurons with [(3)H]-thymidine was significantly lower at E3 age group than that in the Ov shell; 3) In field L1 and L3, two flanking regions of the primary telencephalic auditory area (field L2a), neurogenesis started at E5, but started at E6 in field L2a. These data indicate that the onset of embryogenesis began earlier in the auditory shell areas than in the core areas from the midbrain to the telencephalon. These findings provide insight into the organization of auditory nuclei and their evolution in amniotes.
Collapse
Affiliation(s)
- ShaoJu Zeng
- Key Laboratory for Cell Proliferation and Regulation Biology, Ministry of Education, Beijing Normal University, China
| | | | | | | | | |
Collapse
|
25
|
Chaudhury S, Nag TC, Wadhwa S. Calbindin D-28K and parvalbumin expression in embryonic chick hippocampus is enhanced by prenatal auditory stimulation. Brain Res 2007; 1191:96-106. [PMID: 18096144 DOI: 10.1016/j.brainres.2007.11.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 08/28/2007] [Accepted: 11/12/2007] [Indexed: 12/20/2022]
Abstract
Calcium-binding proteins (CaBPs) buffer excess of cytosolic Ca(2+), which accompanies neuronal activity following external stimuli. Prenatal auditory stimulation by species-specific sound and music influences early maturation of the auditory pathway and the behavioral responses in chicks. In this study, we determined the volume, total number of neurons, proportion of calbindin D-28K and parvalbumin-positive neurons along with their levels of expression in the developing chick hippocampus following prenatal auditory stimulation. Fertilized eggs of domestic chicks were exposed to sounds of either species-specific calls or sitar music at 65 dB for 15 min/h round the clock from embryonic day (E) 10 until hatching. Hippocampi of developmental stages (E12, E16 and E20) were examined. With an increase in embryonic age during normal development, the hippocampus showed an increase in its volume, total number of neurons as well as in the neuron proportions and levels of expression of calbindin D-28K and parvalbumin. A significant increase of volume at E20 was noted only in the music-stimulated group compared to that of their age-matched control (p<0.05). On the other hand, both auditory-stimulated groups showed a significant increase in the proportion of immunopositive neurons and the levels of expression of calbindin D-28K and parvalbumin as compared to the control at all developmental stages studied (p<0.003). The increase in proportions of CaBP neurons during development and in the sound-enriched groups suggests an activity-dependent increase in Ca(2+) influx. The enhanced expression of CaBPs may help in cell survival by preventing excitotoxic death of neurons during development and may also be involved in long-term potentiation.
Collapse
Affiliation(s)
- Sraboni Chaudhury
- Department of Anatomy, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | | | | |
Collapse
|