1
|
Maksimoski AN, Levenson TA, Zhao C, Riters LV. Evidence that flocking behavior is rewarded by singing, flock mates, and mu opioid receptors in the nucleus accumbens. PLoS One 2025; 20:e0318340. [PMID: 39874370 PMCID: PMC11774370 DOI: 10.1371/journal.pone.0318340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/14/2025] [Indexed: 01/30/2025] Open
Abstract
It has been proposed that social groups are maintained both by reward resulting from positive social interactions and by the reduction of a negative state that would otherwise be caused by social separation. European starlings, Sturnus vulgaris, develop strong conditioned place preferences for places associated with the production of song in flocks outside the breeding season (gregarious song) and singers are motivated to rejoin the flock following removal. This indicates that the act of singing in flocks is associated with a positive affective state and raises the possibility that reward induced by song in flocks may play a role in flock maintenance. The goal of this study was to begin to test this hypothesis. We found that birds that sang full songs developed stronger conditioned place preferences than non-singing birds for places associated with flock mates, indicating that singers find the presence of flock mates to be rewarding. Regardless of song rate, the presence of flock mates also induced analgesia (a reflection of the reduction of a negative state). This form of analgesia has been shown to be an indirect measure of opioid release, suggesting that the presence of flock mates may induce opioid-mediated reward. Consistent with this possibility, the numbers of mu opioid receptor immunolabeled cells in the nucleus accumbens correlated positively with measurements of gregarious song and other social behaviors. Results suggest that both gregarious song and social contact promote flock cohesion and that opioids released onto mu opioid receptors in the nucleus accumbens may play an important role.
Collapse
Affiliation(s)
- Alyse N. Maksimoski
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Taviah A. Levenson
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Changjiu Zhao
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Lauren V. Riters
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
2
|
Zhao C, Riters LV. The medial preoptic area and its projections to the ventral tegmental area and the periaqueductal gray are activated in response to social play behavior in juvenile rats. Behav Neurosci 2023; 137:223-235. [PMID: 36877484 PMCID: PMC10363185 DOI: 10.1037/bne0000555] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
The medial preoptic area (MPOA) is well known for its role in sexual and maternal behaviors. This region also plays an important role in affiliative social behaviors outside reproductive contexts. We recently demonstrated that the MPOA is a central nucleus in which opioids govern highly rewarding social play behavior in adolescent rats. However, the neural circuit mechanisms underlying MPOA-mediated social play remain largely unresolved. We hypothesized that the MPOA unites a complementary neural system through which social play induces reward via a projection to the ventral tegmental area (VTA) and reduces a negative affective state through a projection to the periaqueductal gray (PAG). To test whether the two projection pathways are activated in response to social play behavior, we combined retrograde tract tracing with immediate early gene (IEG) expression and immunofluorescent labeling to identify opioid-sensitive projection pathways from the MPOA to VTA and PAG that are activated after performance of social play. Retrograde tracer, fluoro-gold (FG), was microinjected into the VTA or PAG. IEG expression (i.e., Egr1) was assessed and triple immunofluorescent labeling for mu opioid receptor (MOR), Egr1, and FG in the MPOA was performed after social play. We revealed that play animals displayed an increase in neurons double labeled for Egr1 + FG and triple labeled for MOR + Egr1 + FG in the MPOA projecting to both the VTA and PAG when compared to no-play rats. The increased activation of projection neurons that express MORs from MPOA to VTA or PAG after social play suggests that opioids may act through these projection pathways to govern social play. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Collapse
Affiliation(s)
- Changjiu Zhao
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Lauren V. Riters
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
3
|
Riters LV, Stevenson SA. Using seasonality and birdsong to understand mechanisms underlying context-appropriate shifts in social motivation and reward. Horm Behav 2022; 142:105156. [PMID: 35313200 PMCID: PMC9382228 DOI: 10.1016/j.yhbeh.2022.105156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/11/2022] [Accepted: 03/11/2022] [Indexed: 12/29/2022]
Abstract
Social motivation and reward are dynamic and flexible, shifting adaptively across contexts to meet changing social demands. This is exceptionally apparent when seasonal contexts are considered in seasonally breeding songbirds as they cycle from periods of sexual motivation and reward during the breeding season to periods of extreme gregariousness outside the breeding season when non-sexual social interactions gain reward value, motivating birds to form flocks. Here we review evidence demonstrating a key integrative role for the medial preoptic area (mPOA) in the seasonally-appropriate adjustment of behaviors, with seasonal changes in dopamine activity in mPOA adjusting social motivation and changes in opioid activity modifying social reward. Experiments demonstrate that dramatic seasonal fluctuations in steroid hormone concentrations alter patterns of opioid- and dopamine-related protein and gene expression in mPOA to modify social motivation and reward to meet seasonal changes in social demands. These studies of birdsong and seasonality provide new insights into neural and endocrine mechanisms underlying adaptive changes in social motivation and reward and highlight an underappreciated, evolutionarily conserved role for the mPOA in important social behaviors in non-reproductive contexts.
Collapse
Affiliation(s)
- Lauren V Riters
- Department of Integrative Biology, 428 Birge Hall, 430 Lincoln Drive, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Sharon A Stevenson
- Department of Integrative Biology, 428 Birge Hall, 430 Lincoln Drive, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
4
|
Zhao C, Chang L, Auger AP, Gammie SC, Riters LV. Mu opioid receptors in the medial preoptic area govern social play behavior in adolescent male rats. GENES BRAIN AND BEHAVIOR 2020; 19:e12662. [PMID: 32388931 DOI: 10.1111/gbb.12662] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/16/2022]
Abstract
Neural systems underlying important behaviors are usually highly conserved across species. The medial preoptic area (MPOA) has been demonstrated to play a crucial role in reward associated with affiliative, nonsexual, social communication in songbirds. However, the role of MPOA in affiliative, rewarding social behaviors (eg, social play behavior) in mammals remains largely unknown. Here we applied our insights from songbirds to rats to determine whether opioids in the MPOA govern social play behavior in rats. Using an immediate early gene (ie, Egr1, early growth response 1) expression approach, we identified increased numbers of Egr1-labeled cells in the MPOA after social play in adolescent male rats. We also demonstrated that cells expressing mu opioid receptors (MORs, gene name Oprm1) in the MPOA displayed increased Egr1 expression when adolescent rats were engaged in social play using double immunofluorescence labeling of MOR and Egr1. Furthermore, using short hairpin RNA-mediated gene silencing we revealed that knockdown of Oprm1 in the MPOA reduced the number of total play bouts and the frequency of pouncing. Last, RNA sequencing differential gene expression analysis identified genes involved in neuronal signaling with altered expression after Oprm1 knockdown, and identified Egr1 as potentially a key modulator for Oprm1 in the regulation of social play behavior. Altogether, these results show that the MPOA is involved in social play behavior in adolescent male rats and support the hypothesis that the MPOA is part of a conserved neural circuit across vertebrates in which opioids act to govern affiliative, intrinsically rewarded social behaviors.
Collapse
Affiliation(s)
- Changjiu Zhao
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Liza Chang
- Department of Psychology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Anthony P Auger
- Department of Psychology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Stephen C Gammie
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lauren V Riters
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
5
|
Zachar G, Montagnese C, Fazekas EA, Kemecsei RG, Papp SM, Dóra F, Renner É, Csillag A, Pogány Á, Dobolyi A. Brain Distribution and Sexually Dimorphic Expression of Amylin in Different Reproductive Stages of the Zebra Finch ( Taeniopygia guttata) Suggest Roles of the Neuropeptide in Song Learning and Social Behaviour. Front Neurosci 2020; 13:1401. [PMID: 32009882 PMCID: PMC6971405 DOI: 10.3389/fnins.2019.01401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/12/2019] [Indexed: 11/24/2022] Open
Abstract
The expression of the recently identified neuropeptide, amylin, is restricted in rodents to the postpartum preoptic area and may play a role in the control of parental behaviours and food intake. These processes are substantially different between bird and rodent parents as birds do not lactate but often show biparental care of the offspring. To establish the presence and role of amylin in the bird brain, in the present study, we investigated the distribution of amylin in brains of adult male and female zebra finches in three different reproductive stages (i.e. paired without young, incubating eggs or provisioning nestlings) and in unpaired control birds living in same sex flocks. Amylin mRNA was identified in the hypothalamus of zebra finch by RT-PCR, which was also used to produce probes for in situ hybridisation. Subsequently, in situ hybridisation histochemistry was performed in brain sections, and the labelling signal was quantified and compared between the groups. Amylin showed a much wider brain distribution than that of rodents. A strong and, in some regions, sexually dimorphic label was found in the striatum and several brain regions of the social behavioural network in both males and females. Many regions responsible for the learning of birdsong also contained amylin-positive neurons, and some regions showed sex differences reflecting the fact that vocalisation is sexually dimorphic in the zebra finch: only males sing. Area X (Ar.X), a striatal song centre present only in males, was labelled in paired but not unpaired male. Ar.X, another song centre, the lateral part of the magnocellular nucleus of the anterior nidopallium (lMAN) also contained amylin and had higher amylin label in paired, as opposed to unpaired birds. The wider distribution of amylin in birds as compared to rodents suggests a more general role of amylin in social or other behaviours in avian species than in mammals. Alternatively, parental care in birds may be a more complex behavioural trait involving a wider set of brain regions. The sex differences in song centres, and the changes with reproductive status suggest a participation of amylin in social behaviours and related changes in the singing of males.
Collapse
Affiliation(s)
- Gergely Zachar
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Catherine Montagnese
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Emese A Fazekas
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University and the Hungarian Academy of Sciences, Budapest, Hungary.,Department of Ethology, Eötvös Loránd University, Budapest, Hungary
| | - Róbert G Kemecsei
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Szilvia M Papp
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Fanni Dóra
- Human Brain Tissue Bank and Microdissection Laboratory, Semmelweis University, Budapest, Hungary
| | - Éva Renner
- Human Brain Tissue Bank and Microdissection Laboratory, Semmelweis University, Budapest, Hungary
| | - András Csillag
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Ákos Pogány
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary
| | - Arpád Dobolyi
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University and the Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
6
|
Lattin CR, Merullo DP, Riters LV, Carson RE. In vivo imaging of D 2 receptors and corticosteroids predict behavioural responses to captivity stress in a wild bird. Sci Rep 2019; 9:10407. [PMID: 31320692 PMCID: PMC6639298 DOI: 10.1038/s41598-019-46845-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 07/05/2019] [Indexed: 01/11/2023] Open
Abstract
Individual physiological variation may underlie individual differences in behaviour in response to stressors. This study tested the hypothesis that individual variation in dopamine and corticosteroid physiology in wild house sparrows (Passer domesticus, n = 15) would significantly predict behaviour and weight loss in response to a long-term stressor, captivity. We found that individuals that coped better with captivity (fewer anxiety-related behaviours, more time spent feeding, higher body mass) had lower baseline and higher stress-induced corticosteroid titres at capture. Birds with higher striatal D2 receptor binding (examined using positron emission tomography (PET) with 11C-raclopride 24 h post-capture) spent more time feeding in captivity, but weighed less, than birds with lower D2 receptor binding. In the subset of individuals imaged a second time, D2 receptor binding decreased in captivity in moulting birds, and larger D2 decreases were associated with increased anxiety behaviours 2 and 4 weeks post-capture. This suggests changes in dopaminergic systems could be one physiological mechanism underlying negative behavioural effects of chronic stress. Non-invasive technologies like PET have the potential to transform our understanding of links between individual variation in physiology and behaviour and elucidate which neuroendocrine phenotypes predict stress resilience, a question with important implications for both humans and wildlife.
Collapse
Affiliation(s)
- Christine R Lattin
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA. .,Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA.
| | - Devin P Merullo
- Department of Integrative Biology, University of Wisconsin Madison, Madison, WI, USA
| | - Lauren V Riters
- Department of Integrative Biology, University of Wisconsin Madison, Madison, WI, USA
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| |
Collapse
|
7
|
Spool JA, Merullo DP, Zhao C, Riters LV. Co-localization of mu-opioid and dopamine D1 receptors in the medial preoptic area and bed nucleus of the stria terminalis across seasonal states in male European starlings. Horm Behav 2019; 107:1-10. [PMID: 30423316 PMCID: PMC6348025 DOI: 10.1016/j.yhbeh.2018.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/31/2018] [Accepted: 11/09/2018] [Indexed: 01/06/2023]
Abstract
In seasonally breeding animals, changes in photoperiod and sex-steroid hormones may modify sexual behavior in part by altering the activity of neuromodulators, including opioids and dopamine. In rats and birds, activation of mu-opioid receptors (MOR) and dopamine D1 receptors in the medial preoptic area (mPOA) often have opposing effects on sexual behavior, yet mechanisms by which the mPOA integrates these opposing effects to modulate behavior remain unknown. Here, we used male European starlings (Sturnus vulgaris) to provide insight into the hypothesis that MOR and D1 receptors modify sexual behavior seasonally by altering activity in the same neurons in the mPOA. To do this, using fluorescent immunohistochemistry, we examined the extent to which MOR and D1 receptors co-localize in mPOA neurons and the degree to which photoperiod and the sex-steroid hormone testosterone alter co-localization. We found that MOR and D1 receptors co-localize throughout the mPOA and the bed nucleus of the stria terminalis, a region also implicated in the control of sexual behavior. Numbers of single and co-labeled MOR and D1 receptor labeled cells were higher in the rostral mPOA in photosensitive males (a condition observed just prior to the breeding season) compared to photosensitive males treated with testosterone (breeding season condition). In the caudal mPOA co-localization of MOR and D1 receptors was highest in photosensitive males compared to photorefractory males (a post-breeding season condition). Seasonal shifts in the degree to which neurons in the mPOA integrate signaling from opioids and dopamine may underlie seasonal changes in the production of sexual behavior.
Collapse
Affiliation(s)
- Jeremy A Spool
- Department of Integrative Biology, University of Wisconsin, Madison, WI 53706, USA.
| | - Devin P Merullo
- Department of Integrative Biology, University of Wisconsin, Madison, WI 53706, USA.
| | - Changjiu Zhao
- Department of Integrative Biology, University of Wisconsin, Madison, WI 53706, USA.
| | - Lauren V Riters
- Department of Integrative Biology, University of Wisconsin, Madison, WI 53706, USA.
| |
Collapse
|