1
|
Tu YR, Tan M, Li Y, Hong DQ, Niu F. Nicorandil Ameliorates Depression-Like Behaviors After Traumatic Brain Injury by Suppressing Ferroptosis Through the SLC7A11/GPX4 Axis in the Hippocampus. Brain Behav 2025; 15:e70199. [PMID: 39739538 DOI: 10.1002/brb3.70199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/08/2024] [Accepted: 12/01/2024] [Indexed: 01/02/2025] Open
Abstract
INTRODUCTION Depression is a prevalent and significant psychological consequence of traumatic brain injury (TBI). Ferroptosis, an iron-dependent form of regulated cell death, exacerbates the neurological damage associated with TBI. This study investigates whether nicorandil, a potassium channel opener with nitrate-like properties known for its antioxidative and neuroprotective effects, can mitigate depression-like behaviors following TBI by modulating ferroptosis. METHODS A controlled cortical impact (CCI) device was used to establish the TBI model. Depression-like behaviors in rats were assessed using the sucrose preference test (SPT), the tail suspension test (TST), and the forced swimming test (FST). The antioxidant system, lipid peroxidation, and ferroptosis levels were evaluated. The SLC7A11/GPX4 axis was analyzed using quantitative real-time PCR (qRT-PCR) and Western blot analysis. RESULTS Nicorandil administration significantly ameliorated depression-like behaviors in rats with TBI. Nicorandil administration also effectively restored the antioxidant system, substantially reduced lipid peroxidation, and attenuated ferroptosis in the hippocampus of rats with TBI. Mechanistically, nicorandil administration promoted the SLC7A11/GPX4 axis in the hippocampus of rats with TBI. Crucially, knockdown of hippocampal SLC7A11 abrogated the protective effects of nicorandil on depression-like behaviors, lipid peroxidation, and ferroptosis in the hippocampus of rats with TBI. CONCLUSION These findings indicate that nicorandil ameliorates depression-like behaviors following TBI by inhibiting hippocampal ferroptosis through the activation of the SLC7A11/GPX4 axis.
Collapse
Affiliation(s)
- Yao-Ran Tu
- Department of Emergency and Trauma Center, Nanchang First Hospital, Nanchang, Jiangxi, China
| | - Ming Tan
- Department of Emergency and Trauma Center, Nanchang First Hospital, Nanchang, Jiangxi, China
| | - Yao Li
- Department of Emergency and Trauma Center, Nanchang First Hospital, Nanchang, Jiangxi, China
| | - De-Quan Hong
- Department of Emergency and Trauma Center, Nanchang First Hospital, Nanchang, Jiangxi, China
| | - Fan Niu
- Department of Emergency and Trauma Center, Nanchang First Hospital, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Owjfard M, Rahimian Z, Karimi F, Borhani-Haghighi A, Mallahzadeh A. A comprehensive review on the neuroprotective potential of resveratrol in ischemic stroke. Heliyon 2024; 10:e34121. [PMID: 39082038 PMCID: PMC11284444 DOI: 10.1016/j.heliyon.2024.e34121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 06/07/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024] Open
Abstract
Stroke is the second leading cause of death and the third leading cause of disability worldwide. Globally, 68 % of all strokes are ischemic, with 32 % being hemorrhagic. Ischemic stroke (IS) poses significant challenges globally, necessitating the development of effective therapeutic strategies. IS is among the deadliest illnesses. Major functions are played by neuroimmunity, inflammation, and oxidative stress in the multiple intricate pathways of IS. Secondary brain damage is specifically caused by the early pro-inflammatory activity that follows cerebral ischemia, which is brought on by excessive activation of local microglia and the infiltration of circulating monocytes and macrophages. Resveratrol, a natural polyphenol found in grapes and berries, has shown promise as a neuroprotective agent in IS. This review offers a comprehensive overview of resveratrol's neuroprotective role in IS, focusing on its mechanisms of action and therapeutic potential. Resveratrol exerts neuroprotective effects by activating nuclear factor erythroid 2-related factor 2 (NRF2) and sirtuin 1 (SIRT1) pathways. SIRT1 activation by resveratrol triggers the deacetylation and activation of downstream targets like peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) and forkhead box protein O (FOXO), regulating mitochondrial biogenesis, antioxidant defense, and cellular stress response. Consequently, resveratrol promotes cellular survival and inhibits apoptosis in IS. Moreover, resveratrol activates the NRF2 pathway, a key mediator of the cellular antioxidant response. Activation of NRF2 through resveratrol enhances the expression of antioxidant enzymes, like heme oxygenase-1 (HO-1) and NAD(P)H quinone oxidoreductase 1 (NQO1), which neutralize reactive oxygen species and mitigate oxidative stress in the ischemic brain. Combined, the activation of SIRT1 and NRF2 pathways contributes to resveratrol's neuroprotective effects by reducing oxidative stress, inflammation, and apoptosis in IS. Preclinical studies demonstrate that resveratrol improves functional outcomes, reduces infarct size, regulates cerebral blood flow and preserves neuronal integrity. Gaining a comprehensive understanding of these mechanisms holds promise for the development of targeted therapeutic interventions aimed at promoting neuronal survival and facilitating functional recovery in IS patients and to aid future studies in this matter.
Collapse
Affiliation(s)
- Maryam Owjfard
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Rahimian
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | - Arashk Mallahzadeh
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Owjfard M, Rahimian Z, Ghaderpanah R, Rafiei E, Sadrian S, Sabaghan M, Karimi F. Therapeutic Effects of Intranasal Administration of Resveratrol on the Rat Model of Brain Ischemia. Heliyon 2024; 10:e32592. [PMID: 38952360 PMCID: PMC11215267 DOI: 10.1016/j.heliyon.2024.e32592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/16/2024] [Accepted: 06/05/2024] [Indexed: 07/03/2024] Open
Abstract
Background Resveratrol is a natural phenolic compound widely found in plants. Previous studies have suggested its neuroprotective role in cerebral ischemia due to its anti-oxidative, anti-inflammatory, and anti-apoptotic effects. Intranasal administration of resveratrol enhances its capacity to penetrate the blood-brain barrier, increasing therapeutic efficacy and safety. Objective We aimed to examine the therapeutic potential of intranasal administration of resveratrol treatment in rats exposed to cerebral ischemia. Methods Sixty-four male rats were divided into three groups: the sham group, which was exposed to only surgical stress; the vehicle and resveratrol groups, which received intranasal vehicle or 50 mg/kg resveratrol for 7 days following middle cerebral artery occlusion, respectively. We assessed the modified neurologic severity scores, wire hanging tests, blood-brain barrier disruption, brain water content, and infarct volume. Levels of matrix metalloproteinase-9, nuclear factor-kappa B, B-cell lymphoma protein 2, and B-cell lymphoma protein 2-associated X messenger RNA expression were examined. Results At 3- and 7-days post-ischemia, rats receiving intranasal resveratrol had lower modified neurological severity scores and a smaller brain infarct volume than the rats receiving vehicle. Additionally, the intranasal resveratrol-treated rats showed significantly prolonged wire-hanging performance at the 7-day mark post-ischemia compared to the vehicle group. The blood-brain barrier disruption and brain water content were significantly lower in the resveratrol group than in the vehicle group. Furthermore, the resveratrol-treated group displayed lower expression of Matrix Metalloproteinase-9 and Nuclear Factor-Kappa B in contrast to the vehicle group, while the difference in expression levels of B-cell lymphoma protein 2-associated X and B-cell lymphoma protein 2 were not significant. Conclusion Intranasal administration of resveratrol showed neuroprotective effects on ischemic stroke by improving neurobehavioral function, reducing blood-brain barrier disruption, cerebral edema, and infarct volume. This treatment also downregulated Matrix Metalloproteinase-9 and Nuclear Factor-Kappa B expression, indicating its potential as a therapeutic option for ischemic stroke.
Collapse
Affiliation(s)
- Maryam Owjfard
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Shiraz University of Applied Science and Technology (UAST), Shiraz, Iran
| | - Zahra Rahimian
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rezvan Ghaderpanah
- Students Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elahe Rafiei
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyedhassan Sadrian
- Students Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | |
Collapse
|
4
|
Owjfard M, Rahmani N, Mallahzadeh A, Bayat M, Borhani-Haghighi A, Karimi F, Namavar MR. Mechanism of action and neuroprotective role of nicorandil in ischemic stroke. Heliyon 2024; 10:e26640. [PMID: 38434007 PMCID: PMC10906150 DOI: 10.1016/j.heliyon.2024.e26640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 01/24/2024] [Accepted: 02/16/2024] [Indexed: 03/05/2024] Open
Abstract
Nicorandil is a dual mechanism anti-anginal agent that acts as a nitric oxide (NO) donor and a potassium (K+) channel opener. Recent studies have evaluated the effect of nicorandil on ischemic stroke. Neurons have a low tolerance to hypoxia and therefore the brain tissue is significantly vulnerable to ischemia. Current approved treatments for ischemic stroke are tissue plasminogen activators and clot retrieval methods. The narrow therapeutic time window and lack of efficacy in restoring the dying neurons urge researchers to develop an alternative approach. In the terminal stages of anoxia, K+ channels induce hyperpolarization in various types of neuronal cells, leading to decreased neuronal activity and the preservation of the brain's energy. Nicorandil can open these K+ channels and sustain the hyperpolarization phase, which may have a neuroprotective effect during hypoxia. Additionally, we review how nicorandil can improve overall stroke outcomes through its anti-inflammatory, anti-oxidative, and edema-reducing effects. One of the major components evaluated in stroke patients is blood pressure. Studies have demonstrated that the effect of nicorandil on blood pressure is related to both its K+ channel opening and NO donating mechanisms. Since both hypertension and hypotension need correction before stroke intervention, it's crucial to consider the role of nicorandil and its impact on blood pressure. Previously published studies indicate that the right dosage of nicorandil can improve cerebral blood flow without significant changes in hemodynamic profiles. In this review, we discuss how nicorandil may contribute to better stroke outcomes based on previously published literature and laboratory findings.
Collapse
Affiliation(s)
- Maryam Owjfard
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negin Rahmani
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Arashk Mallahzadeh
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahnaz Bayat
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | - Mohammad Reza Namavar
- Histomorphometry & Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Owjfard M, Karimi F, Mallahzadeh A, Nabavizadeh SA, Namavar MR, Saadi MI, Hooshmandi E, Salehi MS, Zafarmand SS, Bayat M, Karimlou S, Borhani-Haghighi A. Mechanism of action and therapeutic potential of dimethyl fumarate in ischemic stroke. J Neurosci Res 2023. [PMID: 37183360 DOI: 10.1002/jnr.25202] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 04/09/2023] [Accepted: 04/21/2023] [Indexed: 05/16/2023]
Abstract
Dimethyl fumarate (DMF) is an immunomodulatory drug currently approved for the treatment of multiple sclerosis and psoriasis. Its benefits on ischemic stroke outcomes have recently come to attention. To date, only tissue plasminogen activators (tPAs) and clot retrieval methods have been approved by the FDA for the treatment of ischemic stroke. Ischemic conditions lead to inflammation through diverse mechanisms, and recanalization can worsen the state. DMF and the nuclear factor erythroid-derived 2-related factor 2 (Nrf2) pathway it regulates seem to be important in postischemic inflammation, and animal studies have demonstrated that the drug improves overall stroke outcomes. Although the exact mechanism is still unknown, studies indicate that these beneficial impacts are due to the modulation of immune responses, blood-brain barrier permeability, and hemodynamic adjustments. One major component evaluated before, during, and after tPA therapy in stroke patients is blood pressure (BP). Recent studies have found that DMF may impact BP. Both hypotension and hypertension need correction before treatment, which may delay the appropriate intervention. Since BP management is crucial in managing stroke patients, it is important to consider DMF's role in this matter. That being said, it seems further investigations on DMF may lead to an alternative approach for stroke patients. In this article, we discuss the mechanistic roles of DMF and its potential role in stroke based on previously published literature and laboratory findings.
Collapse
Affiliation(s)
- Maryam Owjfard
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Shiraz University of Applied Science and Technology (UAST), Shiraz, Iran
| | | | - Arashk Mallahzadeh
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Ali Nabavizadeh
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Namavar
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Etrat Hooshmandi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Saied Salehi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mahnaz Bayat
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sedigheh Karimlou
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
6
|
Navale GR, Singh S, Ghosh K. NO donors as the wonder molecules with therapeutic potential: Recent trends and future perspectives. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
7
|
Cheng J, Qiu L, Zhang Z, Li N, Shu H, Xiao Z, Zhou N. Combination of Nicorandil and Beta-Adrenergic Receptor Blockers in Patients with Coronary Artery Disease: A Real-World Observational Study. J Cardiovasc Pharmacol Ther 2023; 28:10742484231197559. [PMID: 37661662 DOI: 10.1177/10742484231197559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
BACKGROUND The effect of combined nicorandil and beta-adrenergic receptor blockers (BBs) compared with that of BBs alone on long-term clinical outcomes in patients with coronary artery disease (CAD) remains undetermined. METHODS A multicenter retrospective cohort study was performed. Adult patients who had been hospitalized for CAD and treated for angina with a combination of nicorandil and BBs or BBs alone were included. The effect of different treatments on the cumulative incidence of major adverse cardiovascular event (MACE) and their components within a follow-up duration of 2.5 years were analyzed using Kaplan-Meier survival curves. An inverse probability of treatment weighting (IPTW) method was used to adjust for the possible effect of confounding factors. RESULTS A total of 137,714 patients were screened, of whom 16,912 individuals (mean age: 61.5 years, men: 67.1%) were successfully enrolled. Among the enrolled participants, 4669 received the combined treatment of nicorandil and BBs, while 12,243 received BBs alone. After IPTW, the results demonstrated that the combined treatment was associated with a significantly reduced incidence of MACE (hazard ratio [HR] 0.79, 95% conidence interval [CI] 0.72-0.87) and stroke (HR 0.48, 95% CI 0.42-0.54) but not of MI (HR 1.03, 95% CI 0.92-1.15) or all-cause mortality (HR 0.93, 95% CI 0.64-1.37). Sensitivity analyses revealed similar results. CONCLUSIONS A combined antiangina treatment of nicorandil and BBs may be more effective than treatment of BBs alone in reducing the long-term incidence of MACE in patients with CAD.
Collapse
Affiliation(s)
- Jia Cheng
- Division of Cardiology, Department of Internal Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Lin Qiu
- Department of Pharmacy, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Zixuan Zhang
- Division of Cardiology, Department of Internal Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Na Li
- Division of Cardiology, Department of Internal Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Hongyang Shu
- Division of Cardiology, Department of Internal Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Zhichao Xiao
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
- Department of Pharmacy, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Ning Zhou
- Division of Cardiology, Department of Internal Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| |
Collapse
|
8
|
Terryn J, Verfaillie CM, Van Damme P. Tweaking Progranulin Expression: Therapeutic Avenues and Opportunities. Front Mol Neurosci 2021; 14:713031. [PMID: 34366786 PMCID: PMC8343103 DOI: 10.3389/fnmol.2021.713031] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/07/2021] [Indexed: 01/01/2023] Open
Abstract
Frontotemporal dementia (FTD) is a neurodegenerative disease, leading to behavioral changes and language difficulties. Heterozygous loss-of-function mutations in progranulin (GRN) induce haploinsufficiency of the protein and are associated with up to one-third of all genetic FTD cases worldwide. While the loss of GRN is primarily associated with neurodegeneration, the biological functions of the secreted growth factor-like protein are more diverse, ranging from wound healing, inflammation, vasculogenesis, and metabolic regulation to tumor cell growth and metastasis. To date, no disease-modifying treatments exist for FTD, but different therapeutic approaches to boost GRN levels in the central nervous system are currently being developed (including AAV-mediated GRN gene delivery as well as anti-SORT1 antibody therapy). In this review, we provide an overview of the multifaceted regulation of GRN levels and the corresponding therapeutic avenues. We discuss the opportunities, advantages, and potential drawbacks of the diverse approaches. Additionally, we highlight the therapeutic potential of elevating GRN levels beyond patients with loss-of-function mutations in GRN.
Collapse
Affiliation(s)
- Joke Terryn
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium.,Laboratory of Neurobiology, Center for Brain and Disease Research, VIB, Leuven, Belgium
| | - Catherine M Verfaillie
- Department of Development and Regeneration, Interdepartmental Stem Cell Institute, KU Leuven-University of Leuven, Leuven, Belgium
| | - Philip Van Damme
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium.,Laboratory of Neurobiology, Center for Brain and Disease Research, VIB, Leuven, Belgium.,Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|