1
|
Son YJ, Hyun Park S, Lee Y, Lee HJ. Prevalence and risk factors for in-hospital mortality of adult patients on veno-arterial extracorporeal membrane oxygenation for cardiogenic shock and cardiac arrest: A systematic review and meta-analysis. Intensive Crit Care Nurs 2024; 85:103756. [PMID: 38943815 DOI: 10.1016/j.iccn.2024.103756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/30/2024] [Accepted: 06/16/2024] [Indexed: 07/01/2024]
Abstract
OBJECTIVES To synthesize quantitative research findings on the prevalence and risk factors for in-hospital mortality of patients on veno-arterial extracorporeal membrane oxygenation (VA-ECMO). METHODS A comprehensive search was conducted for the period from May 2008 to December 2023 by searching the five electronic databases of PubMed, CINAHL, Web of Science, EMBASE, and Cochrane library. The quality of included studies was assessed using the Newcastle-Ottawa scale. The meta-analysis estimated the pooled odds ratio or standard mean difference and 95% confidence intervals. RESULTS A total of twenty-five studies with 10,409 patients were included in the analysis. The overall in-hospital mortality of patients on VA-ECMO was 56.7 %. In the subgroup analysis, in-hospital mortality of VA-ECMO for cardiogenic shock and cardiac arrest was 49.2 % and 75.2 %, respectively. The number of significant factors associated with an increased risk of in-hospital mortality in the pre-ECMO period (age, body weight, creatinine, chronic kidney disease, pH, and lactic acid) was greater than that in the intra- and post-ECMO periods. Renal replacement, bleeding, and lower limb ischemia were the most significant risk factors for in-hospital mortality in patients receiving VA-ECMO. CONCLUSION Early detection of the identified risk factors can contribute to reducing in-hospital mortality in patients on VA-ECMO. Intensive care unit nurses should provide timely and appropriate care before, during, and after VA-ECMO. IMPLICATIONS FOR CLINICAL PRACTICE Intensive care unit nurses should be knowledgeable about factors associated with the in-hospital mortality of patients on VA-ECMO to improve outcomes. The present findings may contribute to developing guidelines for reducing in-hospital mortality among patients considering ECMO.
Collapse
Affiliation(s)
- Youn-Jung Son
- Red Cross College of Nursing, Chung-Ang University, 84 Heukseok ro, Dongjak-gu, Seoul 06974, South Korea.
| | - So Hyun Park
- Red Cross College of Nursing, Chung-Ang University, 84 Heukseok ro, Dongjak-gu, Seoul 06974, South Korea.
| | - Youngeon Lee
- Emergency Intensive Care Unit, Department of Nursing, Chung-Ang University Hospital, 102 Heukseok-ro, Dongjak-gu, Seoul 06973, South Korea.
| | - Hyeon-Ju Lee
- Department of Nursing, Tongmyoung University, Busan 48520, South Korea.
| |
Collapse
|
2
|
Patel H, Dupuis L, Bacchetta M, Hernandez A, Kanwar MK, Lindenfeld J, Shah Z, Siddiqi HK, Sinha SS, Shah AS, Schlendorf KH, Rali AS. Three-year outcomes after bridge to transplantation ECMO-pre- and post-2018 UNOS revised heart allocation system. J Heart Lung Transplant 2024; 43:1838-1845. [PMID: 39122220 DOI: 10.1016/j.healun.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Utilization of temporary mechanical circulatory support, including veno-arterial extra-corporeal membrane oxygenation as a bridge to heart transplantation (HT) has increased significantly under the revised United Network for Organ Sharing (UNOS) donor heart allocation system. The revised heart allocation system aimed to lower waitlist times and mortality for the most critically ill patients requiring biventricular, nondischargeable, mechanical circulatory support. While previous reports have shown improved 1-year post-HT survival in the current era, 3-year survival and factors associated with mortality among bridge-to-transplant (BTT) extra-corporeal membrane oxygenation (ECMO) patients are not well described. METHODS We queried the UNOS database for all adult (age ≥ 18 years) heart-only transplants performed between 2010 and 2019. Patients were stratified as either pre- (January 2010-September 2018; era 1) or post-allocation change (November 2018-December 2019; era 2) cohort based on their HT date. Baseline recipient characteristics and post-transplant outcomes were compared. A Cox regression analysis was performed to explore risk factors for 3-year mortality among BTT-ECMO patients in era 2. For each era, 3-year mortality was also compared between BTT ECMO patients and those transplanted without ECMO support. RESULTS During the study period, 116 patients were BTT ECMO during era 1 and 154 patients during era 2. Baseline recipient characteristics were similar in both groups. Median age was 48 (36-58 interquartile range (IQR)) years in era 2, while it was 51 (27-58 IQR) years in era 1. The majority of BTT-ECMO patients were males in both era 2 and era 1 (77.7% vs 71.5%, p = 0.28). Median ECMO run times while listed for HT were significantly shorter (4 days vs 7 days, p < 0.001) in era 2. Waitlist mortality among BTT ECMO patients was also significantly lower in era 2 (6.3% vs 19.3%, p < 0.001). Post-HT survival at 6 months (94.2% vs 75.9%, p < 0.001), 1 year (90.3% vs 74.2%, p < 0.001), and 3 years (87% vs 66.4%, p < 0.001) was significantly improved in era 2 as compared to era 1. Graft failure at 1 year (10.3% vs 25.8%, p = 0.0006) and 3 years (13.6% vs 33.6%, p = 0.0001) was also significantly lower in era 2 compared to era 1. Three-year survival among BTT ECMO patients in era 2 was similar to that of patients transplanted in era 2 without ECMO support (87% vs 85.7%, p = 0.75). In multivariable analysis of BTT-ECMO patients in era 2, every 1 kg/m2 increase in body mass index was associated with higher mortality at 3 years (hazard ratio (HR) 1.09, 95% CI 1.02-1.15, p = 0.006). Similarly, both post-HT stroke (HR 5.58, 95% CI 2.57-12.14, p < 0.001) and post-HT renal failure requiring hemodialysis (HR 4.36, 95% CI 2.43-7.82, p < 0.001) were also associated with 3-year mortality. CONCLUSIONS Three years post-HT survival in patients bridged with ECMO has significantly improved under the revised donor heart allocation system compared to prior system. BTT ECMO recipients under the revised system have significantly shorter ECMO waitlist run times, lower waitlist mortality and 3-year survival similar to those not bridged with ECMO. Overall, the revised allocation system has allowed more rapid transplantation of the sickest patients without a higher post-HT mortality.
Collapse
Affiliation(s)
- Het Patel
- Department of Internal Medicine, Willis Knighton Health System, Shreveport, Louisiana
| | - Leonie Dupuis
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Matthew Bacchetta
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Antonio Hernandez
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Manreet K Kanwar
- Cardiovascular Institute, Allegheny Health Network, Pittsburgh, Pennsylvania
| | - JoAnn Lindenfeld
- Division of Cardiovascular Diseases, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Zubair Shah
- Department of Cardiovascular Diseases, University of Kansas Medical Center, Kansas City, Kansas
| | - Hasan K Siddiqi
- Division of Cardiovascular Diseases, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Shashank S Sinha
- Inova Schar Heart and Vascular, Inova Fairfax Medical Campus, Falls Church, Virginia
| | - Ashish S Shah
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Kelly H Schlendorf
- Division of Cardiovascular Diseases, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Aniket S Rali
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee; Division of Cardiovascular Diseases, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
3
|
Owyang CG, Rippon B, Teran F, Brodie D, Araos J, Burkhoff D, Kim J, Tonna JE. Pulmonary Artery Pressures and Mortality During Venoarterial ECMO: An ELSO Registry Analysis. Circ Heart Fail 2024; 17:e011123. [PMID: 38979607 PMCID: PMC11251849 DOI: 10.1161/circheartfailure.123.011123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 05/16/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND Systemic hemodynamics and specific ventilator settings have been shown to predict survival during venoarterial extracorporeal membrane oxygenation (ECMO). How the right heart (the right ventricle and pulmonary artery) affect survival during venoarterial ECMO is unknown. We aimed to identify the relationship between right heart function with mortality and the duration of ECMO support. METHODS Cardiac ECMO runs in adults from the Extracorporeal Life Support Organization Registry between 2010 and 2022 were queried. Right heart function was quantified via pulmonary artery pulse pressure (PAPP) for pre-ECMO and on-ECMO periods. A multivariable model was adjusted for modified Society for Cardiovascular Angiography and Interventions stage, age, sex, and concurrent clinical data (ie, pulmonary vasodilators and systemic pulse pressure). The primary outcome was in-hospital mortality. RESULTS A total of 4442 ECMO runs met inclusion criteria and had documentation of hemodynamic and illness severity variables. The mortality rate was 55%; nonsurvivors were more likely to be older, have a worse Society for Cardiovascular Angiography and Interventions stage, and have longer pre-ECMO endotracheal intubation times (P<0.05 for all) than survivors. Increasing PAPP from pre-ECMO to on-ECMO time (ΔPAPP) was associated with reduced mortality per 2 mm Hg increase (odds ratio, 0.98 [95% CI, 0.97-0.99]; P=0.002). Higher on-ECMO PAPP was associated with mortality reduction across quartiles with the greatest reduction in the third PAPP quartile (odds ratio, 0.75 [95% CI, 0.63-0.90]; P=0.002) and longer time on ECMO per 10 mm Hg (beta, 15 [95% CI, 7.7-21]; P<0.001). CONCLUSIONS Early on-ECMO right heart function and interval improvement from pre-ECMO values were associated with mortality reduction during cardiac ECMO. Incorporation of right heart metrics into risk prediction models should be considered.
Collapse
Affiliation(s)
- Clark G. Owyang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, NewYork-Presbyterian Hospital/Weill Cornell Medical College, New York, New York, USA
- Department of Emergency Medicine, NewYork-Presbyterian Hospital/Weill Cornell Medical College, New York, New York, USA
| | - Brady Rippon
- Department of Population Health Sciences, Weill Cornell Medical College, New York, New York, USA
| | - Felipe Teran
- Department of Emergency Medicine, NewYork-Presbyterian Hospital/Weill Cornell Medical College, New York, New York, USA
| | - Daniel Brodie
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Joaquin Araos
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | | | - Jiwon Kim
- Division of Cardiology, Department of Medicine, Weill Cornell Medicine/New York Presbyterian Hospital, 525 East 68th Street, New York, NY, 10021, USA
| | - Joseph E. Tonna
- Division of Cardiothoracic Surgery, Department of Surgery, University of Utah Health, Salt Lake City, UT, USA; Department of Emergency Medicine, University of Utah Health, Salt Lake City, UT, USA
| |
Collapse
|
4
|
Randhawa VK, Lee R, Alviar CL, Rali AS, Arias A, Vaidya A, Zern EK, Fagan A, Proudfoot AG, Katz JN. Extra-cardiac management of cardiogenic shock in the intensive care unit. J Heart Lung Transplant 2024; 43:1051-1058. [PMID: 38823968 DOI: 10.1016/j.healun.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 06/03/2024] Open
Abstract
Cardiogenic shock (CS) is a heterogeneous clinical syndrome characterized by low cardiac output leading to end-organ hypoperfusion. Organ dysoxia ranging from transient organ injury to irreversible organ failure and death occurs across all CS etiologies but differing by incidence and type. Herein, we review the recognition and management of respiratory, renal and hepatic failure complicating CS. We also discuss unmet needs in the CS care pathway and future research priorities for generating evidence-based best practices for the management of extra-cardiac sequelae. The complexity of CS admitted to the contemporary cardiac intensive care unit demands a workforce skilled to care for these extra-cardiac critical illness complications with an appreciation for how cardio-systemic interactions influence critical illness outcomes in afflicted patients.
Collapse
Affiliation(s)
- Varinder K Randhawa
- Department of Critical Care Medicine, Sunnybrook Health Sciences Centre, Division of Cardiology, St Michael's Hospital, and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ran Lee
- Department of Cardiovascular Medicine, Heart Vascular and Thoracic Institute, Sections of Critical Care Cardiology and Advanced Heart Failure and Transplant Cardiology, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Carlos L Alviar
- The Leon H Charney Division of Cardiovascular Medicine, NYU Langone Medical Center, New York, New York
| | - Aniket S Rali
- Department of Internal Medicine, Division of Cardiovascular Diseases, and Department of Anesthesiology, Division of Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Alexandra Arias
- Instituto Nacional de Cardiologia Ignacio Chavez, Mexico City, Mexico
| | - Anjali Vaidya
- Pulmonary Hypertension, Right Heart Failure, and CTEPH Program, Division of Cardiology, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Emily K Zern
- Department of Cardiology, Keck School of Medicine of University of Southern California, Los Angeles General Medicine Center, Los Angeles General Medical Center, Keck School of Medicine of University of Southern California, Los Angeles, California
| | - Andrew Fagan
- Department of Surgery, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Alastair G Proudfoot
- Department of Perioperative Medicine, Barts Heart Centre, St Bartholomew's Hospital, London, United Kingdom
| | - Jason N Katz
- Division of Cardiology, NYU Grossman School of Medicine and Bellevue Hospital Center, New York, New York.
| |
Collapse
|
5
|
Dammassa V, Colombo CNJ, Erba M, Ciarrocchi F, Pagani M, Price S, Mojoli F, Tavazzi G. Echocardiographic assessment of right ventricular performance in COVID-19 related acute respiratory distress syndrome: the importance of systo-diastolic interaction. Ultrasound J 2024; 16:26. [PMID: 38713303 PMCID: PMC11076422 DOI: 10.1186/s13089-024-00366-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 02/20/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND The cardiac manifestations of COVID-19 have been described in patients with acute respiratory distress syndrome (ARDS) admitted to intensive care unit (ICU). The presence and impact of right ventricular (RV) diastolic function and performance has not been studied in this population yet. We describe the prevalence of RV diastolic dysfunction, assessed by the pulmonary valve pre-ejection A wave (PV A wave), and the RV systo-diastolic interaction, using the RV total isovolumic time (t-IVT), in COVID-19 ARDS. RESULTS Prospective observational study enrolling patients with moderate to severe COVID-19 ARDS admitted to ICU who underwent a transthoracic echocardiogram within 24 h of ICU admission and at least a second one during the ICU stay. Respiratory, hemodynamic and biochemistry parameters were collected. 163 patients (age 61.0 ± 9.3 years, 72% males) were enrolled. 36 patients (22.1%) had RV dysfunction, 45 (27.1%) LV systolic dysfunction. 73 patients (44.7%) had PV A wave. The RV t-IVT correlated with TAPSE at ICU admission (p < 0.002; r - 0.61), presence of PV A wave (p < 0.001; r 0.78), peak inspiratory pressure (PIP) (p < 0.001; r 0.42), PEEP (p < 0.001; r 0.68), dynamic driving pressure (DDP) (p < 0.001; r 0.58), and PaO2/FiO2 ratio (p < 0.01; r - 0.35). The presence of PV A wave was associated with higher PIP (p < 0.001; r 0.45), higher PEEP (p < 0.001; r 0.56), higher DDP (p < 0.01, r 0.51), and lower PaO2/FiO2 ratio (p < 0.001; r - 0.49). CONCLUSIONS RV t-IVT and the presence of PV A wave are non-invasive means to describe a significant RV diastolic dysfunction and may be consider descriptive signs of RV performance in COVID-19 ARDS.
Collapse
Affiliation(s)
- Valentino Dammassa
- Department of Experimental Medicine, University of Pavia, Pavia, Italy
- Adult Intensive Care Unit, Royal Brompton Hospital, London, UK
| | - Costanza Natalia Julia Colombo
- Department of Experimental Medicine, University of Pavia, Pavia, Italy
- Anesthesia and Intensive Care, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Massimo Erba
- Anesthesia and Intensive Care, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Fabio Ciarrocchi
- Anesthesia and Intensive Care, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Michele Pagani
- Anesthesia and Intensive Care, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Susanna Price
- Adult Intensive Care Unit, Royal Brompton Hospital, London, UK
- National Heart and Lung Institute, Imperial College, London, UK
| | - Francesco Mojoli
- Anesthesia and Intensive Care, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, Unit of Anesthesia and Intensive Care, University of Pavia, Pavia, Italy
| | - Guido Tavazzi
- Anesthesia and Intensive Care, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, Unit of Anesthesia and Intensive Care, University of Pavia, Pavia, Italy.
| |
Collapse
|
6
|
Lopez MP, Applefeld W, Miller PE, Elliott A, Bennett C, Lee B, Barnett C, Solomon MA, Corradi F, Sionis A, Mireles-Cabodevila E, Tavazzi G, Alviar CL. Complex Heart-Lung Ventilator Emergencies in the CICU. Cardiol Clin 2024; 42:253-271. [PMID: 38631793 DOI: 10.1016/j.ccl.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
This review aims to enhance the comprehension and management of cardiopulmonary interactions in critically ill patients with cardiovascular disease undergoing mechanical ventilation. Highlighting the significance of maintaining a delicate balance, this article emphasizes the crucial role of adjusting ventilation parameters based on both invasive and noninvasive monitoring. It provides recommendations for the induction and liberation from mechanical ventilation. Special attention is given to the identification of auto-PEEP (positive end-expiratory pressure) and other situations that may impact hemodynamics and patients' outcomes.
Collapse
Affiliation(s)
- Mireia Padilla Lopez
- Department of Cardiology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute IIB Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Willard Applefeld
- Division of Cardiology, Duke University Medical Center, Durham, NC, USA
| | - P. Elliott Miller
- Division of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Andrea Elliott
- Division of Cardiology, University of Minnesota, Minneapolis, MN, USA
| | - Courtney Bennett
- Heart and Vascular Institute, Leigh Valley Health Network, Allentown, PA, USA
| | - Burton Lee
- Department of Critical Care Medicine, National Institutes of Health Clinical Center, Bethesda, MA, USA
| | - Christopher Barnett
- Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Michael A Solomon
- Clinical Center and Cardiology Branch, Critical Care Medicine Department, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MA, USA
| | - Francesco Corradi
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Alessandro Sionis
- Department of Cardiology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute IIB Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Eduardo Mireles-Cabodevila
- Respiratory Institute, Cleveland Clinic, Ohio and the Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Guido Tavazzi
- Department of Critical Care Medicine, Intensive Care Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Carlos L Alviar
- The Leon H. Charney Division of Cardiovascular Medicine, New York University School of Medicine, USA.
| |
Collapse
|
7
|
Szuldrzynski K, Kowalewski M, Swol J. Mechanical ventilation during extracorporeal membrane oxygenation support - New trends and continuing challenges. Perfusion 2024; 39:107S-114S. [PMID: 38651573 DOI: 10.1177/02676591241232270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
BACKGROUND The impact of mechanical ventilation on the survival of patients supported with veno-venous extracorporeal membrane oxygenation (V-V ECMO) due to severe acute respiratory distress syndrome (ARDS) remains still a focus of research. METHODS Recent guidelines, randomized trials, and registry data underscore the importance of lung-protective ventilation during respiratory and cardiac support on ECMO. RESULTS This approach includes decreasing mechanical power delivery by reducing tidal volume and driving pressure as much as possible, using low or very low respiratory rate, and a personalized approach to positive-end expiratory pressure (PEEP) setting. Notably, the use of ECMO in awake and spontaneously breathing patients is increasing, especially as a bridging strategy to lung transplantation. During respiratory support in V-V ECMO, native lung function is of highest importance and adjustments of blood flow on ECMO, or ventilator settings significantly impact the gas exchange. These interactions are more complex in veno-arterial (V-A) ECMO configuration and cardiac support. The fraction on delivered oxygen in the sweep gas and sweep gas flow rate, blood flow per minute, and oxygenator efficiency have an impact on gas exchange on device side. On the patient side, native cardiac output, native lung function, carbon dioxide production (VCO2), and oxygen consumption (VO2) play a role. Avoiding pulmonary oedema includes left ventricle (LV) distension monitoring and prevention, pulse pressure >10 mm Hg and aortic valve opening assessment, higher PEEP adjustment, use of vasodilators, ECMO flow adjustment according to the ejection fraction, moderate use of inotropes, diuretics, or venting strategies as indicated and according to local expertise and resources. CONCLUSION Understanding the physiological principles of gas exchange during cardiac support on femoro-femoral V-A ECMO configuration and the interactions with native gas exchange and haemodynamics are essential for the safe applications of these techniques in clinical practice. Proning during ECMO remains to be discussed until further data is available from prospective, randomized trials implementing individualized PEEP titration during proning.
Collapse
Affiliation(s)
- Konstanty Szuldrzynski
- Department of Anaesthesiology and Intensive Care, National Institute of Medicine of the Ministry of Interior and Administration in Warsaw, Warsaw, Poland
| | - Mariusz Kowalewski
- Department of Cardiac Surgery and Transplantology, National Medical Institute of the Ministry of Interior and Administration, Warsaw, Poland
- Thoracic Research Centre, Collegium Medicum Nicolaus Copernicus University, Innovative Medical Forum, Bydgoszcz, Poland
- Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, IRCCS-ISMETT, Palermo, Italy
- Cardio-Thoracic Surgery Department, Heart and Vascular Centre, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Justyna Swol
- Department of Respiratory Medicine, Paracelsus Medical University, Nuremberg, Germany
| |
Collapse
|
8
|
Bachmann KF, Berger D, Moller PW. Interactions between extracorporeal support and the cardiopulmonary system. Front Physiol 2023; 14:1231016. [PMID: 37772062 PMCID: PMC10523013 DOI: 10.3389/fphys.2023.1231016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/29/2023] [Indexed: 09/30/2023] Open
Abstract
This review describes the intricate physiological interactions involved in the application of extracorporeal therapy, with specific focus on cardiopulmonary relationships. Extracorporeal therapy significantly influences cardiovascular and pulmonary physiology, highlighting the necessity for clinicians to understand these interactions for improved patient care. Veno-arterial extracorporeal membrane oxygenation (veno-arterial ECMO) unloads the right ventricle and increases left ventricular (LV) afterload, potentially exacerbating LV failure and pulmonary edema. Veno-venous (VV) ECMO presents different challenges, where optimal device and ventilator settings remain unknown. Influences on right heart function and native gas exchange as well as end-expiratory lung volumes are important concepts that should be incorporated into daily practice. Future studies should not be limited to large clinical trials focused on mortality but rather address physiological questions to advance the understanding of extracorporeal therapies. This includes exploring optimal device and ventilator settings in VV ECMO, standardizing cardiopulmonary function monitoring strategies, and developing better strategies for device management throughout their use. In this regard, small human or animal studies and computational physiological modeling may contribute valuable insights into optimizing the management of extracorporeal therapies.
Collapse
Affiliation(s)
- Kaspar F. Bachmann
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of Anaesthesiology and Intensive Care, University of Tartu, Tartu, Estonia
| | - David Berger
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Per Werner Moller
- Department of Anaesthesia, SV Hospital Group, Institute of Clinical Sciences at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|