1
|
Yakobov N, Debard S, Fischer F, Senger B, Becker HD. Cytosolic aminoacyl-tRNA synthetases: Unanticipated relocations for unexpected functions. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1861:387-400. [PMID: 29155070 DOI: 10.1016/j.bbagrm.2017.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 12/13/2022]
Abstract
Prokaryotic and eukaryotic cytosolic aminoacyl-tRNA synthetases (aaRSs) are essentially known for their conventional function of generating the full set of aminoacyl-tRNA species that are needed to incorporate each organism's repertoire of genetically-encoded amino acids during ribosomal translation of messenger RNAs. However, bacterial and eukaryotic cytosolic aaRSs have been shown to exhibit other essential nonconventional functions. Here we review all the subcellular compartments that prokaryotic and eukaryotic cytosolic aaRSs can reach to exert either a conventional or nontranslational role. We describe the physiological and stress conditions, the mechanisms and the signaling pathways that trigger their relocation and the new functions associated with these relocating cytosolic aaRS. Finally, given that these relocating pools of cytosolic aaRSs participate to a wide range of cellular pathways beyond translation, but equally important for cellular homeostasis, we mention some of the pathologies and diseases associated with the dis-regulation or malfunctioning of these nontranslational functions.
Collapse
Affiliation(s)
- Nathaniel Yakobov
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156, CNRS, Université de Strasbourg, Institut de Botanique, 28 rue Goethe, 67083 Strasbourg Cedex, France
| | - Sylvain Debard
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156, CNRS, Université de Strasbourg, Institut de Botanique, 28 rue Goethe, 67083 Strasbourg Cedex, France
| | - Frédéric Fischer
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156, CNRS, Université de Strasbourg, Institut de Botanique, 28 rue Goethe, 67083 Strasbourg Cedex, France
| | - Bruno Senger
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156, CNRS, Université de Strasbourg, Institut de Botanique, 28 rue Goethe, 67083 Strasbourg Cedex, France
| | - Hubert Dominique Becker
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156, CNRS, Université de Strasbourg, Institut de Botanique, 28 rue Goethe, 67083 Strasbourg Cedex, France.
| |
Collapse
|
2
|
Lin JH, Tseng WB, Lin KC, Lee CY, Chandirasekar S, Tseng WL, Hsieh MM. Oligonucleotide-Based Fluorescent Probe for Sensing of Cyclic Diadenylate Monophosphate in Bacteria and Diadenosine Polyphosphates in Human Tears. ACS Sens 2016. [DOI: 10.1021/acssensors.6b00425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jia-Hui Lin
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung City, Taiwan 804
| | - Wei-Bin Tseng
- Department
of Chemistry, National Kaohsiung Normal University, Kaohsiung City, Taiwan 802
| | - Kai-Cheng Lin
- Department
of Orthopaedics, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan 813
| | - Chih-Yi Lee
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung City, Taiwan 804
| | | | - Wei-Lung Tseng
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung City, Taiwan 804
- School
of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung City, Taiwan 807
| | - Ming-Mu Hsieh
- Department
of Chemistry, National Kaohsiung Normal University, Kaohsiung City, Taiwan 802
| |
Collapse
|
3
|
Brugia malayi Asparaginyl-tRNA Synthetase Stimulates Endothelial Cell Proliferation, Vasodilation and Angiogenesis. PLoS One 2016; 11:e0146132. [PMID: 26751209 PMCID: PMC4709172 DOI: 10.1371/journal.pone.0146132] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 12/14/2015] [Indexed: 11/24/2022] Open
Abstract
A hallmark of chronic infection with lymphatic filarial parasites is the development of lymphatic disease which often results in permanent vasodilation and lymphedema, but all of the mechanisms by which filarial parasites induce pathology are not known. Prior work showed that the asparaginyl-tRNA synthetase (BmAsnRS) of Brugia malayi, an etiological agent of lymphatic filariasis, acts as a physiocrine that binds specifically to interleukin-8 (IL-8) chemokine receptors. Endothelial cells are one of the many cell types that express IL-8 receptors. IL-8 also has been reported previously to induce angiogenesis and vasodilation, however, the effect of BmAsnRS on endothelial cells has not been reported. Therefore, we tested the hypothesis that BmAsnRS might produce physiological changes in endothelial by studying the in vitro effects of BmAsnRS using a human umbilical vein cell line EA.hy926 and six different endothelial cell assays. Our results demonstrated that BmAsnRS produces consistent and statistically significant effects on endothelial cells that are identical to the effects of VEGF, vascular endothelial growth factor. This study supports the idea that new drugs or immunotherapies that counteract the adverse effects of parasite-derived physiocrines may prevent or ameliorate the vascular pathology observed in patients with lymphatic filariasis.
Collapse
|
4
|
Shon HK, Cho YL, Lim CS, Choi JS, Chung SJ, Lee TG. ToF-SIMS analysis of diadenosine triphosphate and didadenosine tetraphosphate using bismuth and argon cluster ion beams. SURF INTERFACE ANAL 2014. [DOI: 10.1002/sia.5514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hyun Kyong Shon
- Center for Nano-Bio Convergence; Korea Research Institute of Standards and Science; Daejeon 305-340 Republic of Korea
| | - Young-Lai Cho
- Center for Nano-Bio Convergence; Korea Research Institute of Standards and Science; Daejeon 305-340 Republic of Korea
- Department of Chemistry; Dongguk University; Seoul 100-715 Republic of Korea
| | - Choung Su Lim
- Center for Nano-Bio Convergence; Korea Research Institute of Standards and Science; Daejeon 305-340 Republic of Korea
- Department of Biochemistry; Chungnam National University; Daejeon 305-764 Republic of Korea
| | - Joon Sig Choi
- Department of Biochemistry; Chungnam National University; Daejeon 305-764 Republic of Korea
| | - Sang J. Chung
- Department of Chemistry; Dongguk University; Seoul 100-715 Republic of Korea
| | - Tae Geol Lee
- Center for Nano-Bio Convergence; Korea Research Institute of Standards and Science; Daejeon 305-340 Republic of Korea
| |
Collapse
|
5
|
Wright M, Miller AD. Quantification of diadenosine polyphosphates in blood plasma using a tandem boronate affinity-ion exchange chromatography system. Anal Biochem 2012; 432:103-5. [PMID: 23046945 DOI: 10.1016/j.ab.2012.09.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 09/27/2012] [Accepted: 09/28/2012] [Indexed: 10/27/2022]
Abstract
Endogenous diadenosine polyphosphates (Ap(n)As) have been associated with a variety of biological effects but quantifying their concentration in blood is difficult. We report on the development of a tandem affinity-ion exchange high-performance liquid chromatography (HPLC) system that employs boronate affinity upstream of ion exchange chromatography for automated rapid (45-min) resolution and extraction of Ap(n)As from human plasma. This system obviates previous requirements for multiple column separations and handling steps, so it is ideally set up for time- and cost-efficient screening of blood samples for Ap(n)A pharmacokinetic and biodistribution studies.
Collapse
Affiliation(s)
- Michael Wright
- Institute of Pharmaceutical Science, King's College London, London SE1 9NH, UK
| | | |
Collapse
|
6
|
Abstract
Purines appear to be the most primitive and widespread chemical messengers in the animal and plant kingdoms. The evidence for purinergic signalling in plants, invertebrates and lower vertebrates is reviewed. Much is based on pharmacological studies, but important recent studies have utilized the techniques of molecular biology and receptors have been cloned and characterized in primitive invertebrates, including the social amoeba Dictyostelium and the platyhelminth Schistosoma, as well as the green algae Ostreococcus, which resemble P2X receptors identified in mammals. This suggests that contrary to earlier speculations, P2X ion channel receptors appeared early in evolution, while G protein-coupled P1 and P2Y receptors were introduced either at the same time or perhaps even later. The absence of gene coding for P2X receptors in some animal groups [e.g. in some insects, roundworms (Caenorhabditis elegans) and the plant Arabidopsis] in contrast to the potent pharmacological actions of nucleotides in the same species, suggests that novel receptors are still to be discovered.
Collapse
Affiliation(s)
- G Burnstock
- Autonomic Neuroscience Centre, Royal Free and University College Medical School, London, UK.
| | | |
Collapse
|
7
|
Pesek JJ, Matyska MT, Hearn MTW, Boysen RI. Aqueous normal-phase retention of nucleotides on silica hydride columns. J Chromatogr A 2008; 1216:1140-6. [PMID: 19135674 DOI: 10.1016/j.chroma.2008.12.046] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 12/15/2008] [Accepted: 12/17/2008] [Indexed: 10/21/2022]
Abstract
The use of silica hydride-based stationary phases for the retention and analysis of nucleotides has been investigated. Both reversed-phase columns with a hydride surface underneath as well as those with an unmodified or a minimally modified hydride material were tested. With these systems, an aqueous normal-phase mode was used with high organic content mobile phases in combination with an additive to control pH for the retention of the hydrophilic nucleotides. Isocratic and gradient elution formats have been used to optimize separations for mixtures containing up to seven components. All conditions developed are suitable for methods that utilize mass spectrometry detection.
Collapse
Affiliation(s)
- Joseph J Pesek
- Department of Chemistry, San Jose State University, San Jose, CA 95112, USA.
| | | | | | | |
Collapse
|