1
|
Patrick KS, Radke JL, Raymond JR, Koller L, Nguyen LV, Rodriguez W, Straughn AB. Drug Regimen Individualization for Attention‐Deficit/Hyperactivity Disorder: Guidance for Methylphenidate and Dexmethylphenidate Formulations. Pharmacotherapy 2018; 39:677-688. [PMID: 30351459 DOI: 10.1002/phar.2190] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Kennerly Sexton Patrick
- Department of Drug Discovery & Biomedical Sciences Medical University of South Carolina, College of Pharmacy Charleston South Carolina
| | - Jennifer L. Radke
- Department of Drug Discovery & Biomedical Sciences Medical University of South Carolina, College of Pharmacy Charleston South Carolina
| | - John R. Raymond
- Department of Drug Discovery & Biomedical Sciences Medical University of South Carolina, College of Pharmacy Charleston South Carolina
| | - Lauren Koller
- Department of Drug Discovery & Biomedical Sciences Medical University of South Carolina, College of Pharmacy Charleston South Carolina
| | - Linda V. Nguyen
- Department of Drug Discovery & Biomedical Sciences Medical University of South Carolina, College of Pharmacy Charleston South Carolina
| | - Wendy Rodriguez
- Department of Drug Discovery & Biomedical Sciences Medical University of South Carolina, College of Pharmacy Charleston South Carolina
| | - Arthur B. Straughn
- Department of Pharmaceutical Sciences University of Tennessee Health Sciences Center, College of Pharmacy Memphis Tennessee
| |
Collapse
|
2
|
Ribeiro C, Santos C, Gonçalves V, Ramos A, Afonso C, Tiritan ME. Chiral Drug Analysis in Forensic Chemistry: An Overview. Molecules 2018; 23:E262. [PMID: 29382109 PMCID: PMC6017579 DOI: 10.3390/molecules23020262] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 01/19/2018] [Accepted: 01/25/2018] [Indexed: 12/11/2022] Open
Abstract
Many substances of forensic interest are chiral and available either as racemates or pure enantiomers. Application of chiral analysis in biological samples can be useful for the determination of legal or illicit drugs consumption or interpretation of unexpected toxicological effects. Chiral substances can also be found in environmental samples and revealed to be useful for determination of community drug usage (sewage epidemiology), identification of illicit drug manufacturing locations, illegal discharge of sewage and in environmental risk assessment. Thus, the purpose of this paper is to provide an overview of the application of chiral analysis in biological and environmental samples and their relevance in the forensic field. Most frequently analytical methods used to quantify the enantiomers are liquid and gas chromatography using both indirect, with enantiomerically pure derivatizing reagents, and direct methods recurring to chiral stationary phases.
Collapse
Affiliation(s)
- Cláudia Ribeiro
- Institute of Research and Advanced Training in Health Sciences and Technologies , Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal.
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal.
| | - Cristiana Santos
- Institute of Research and Advanced Training in Health Sciences and Technologies , Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal.
| | - Valter Gonçalves
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto , Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Ana Ramos
- Institute of Science and Innovation in Mechanical and Industrial Engineering (INEGI), Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, 400, 4200-465 Porto, Portugal.
| | - Carlos Afonso
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal.
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto , Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Maria Elizabeth Tiritan
- Institute of Research and Advanced Training in Health Sciences and Technologies , Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal.
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal.
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto , Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
3
|
Arnold A, Persike M, Gorka J, Dommett EJ, Zimmermann M, Karas M. Fast quantitative determination of methylphenidate levels in rat plasma and brain ex vivo by MALDI-MS/MS. JOURNAL OF MASS SPECTROMETRY : JMS 2015; 50:963-971. [PMID: 28338275 DOI: 10.1002/jms.3605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 04/15/2015] [Accepted: 04/21/2015] [Indexed: 06/06/2023]
Abstract
This study presents a simple and sensitive high-throughput matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry (MALDI-MS/MS) method for ex vivo quantification of methylphenidate (MPH) in rat plasma and brain. The common MALDI matrix alpha-cyano-4-hydroxycinnamic acid was used to obtain an optimal dried droplet preparation. For method validation, standards diluted in plasma and brain homogenate prepared from untreated (control) rats were used. MPH was quantified within a concentration range of 0.1-40 ng/ml in plasma and 0.4-40 ng/ml in brain homogenate with an excellent linearity (R2 ≥ 0.9997) and good precision. The intra-day and inter-day accuracies fulfilled the FDA's ±15/20 critera. The recovery of MPH ranged from 93.8 to 98.5% and 87.2 to 99.8% in plasma and homogenate, respectively. We show that MPH is successfully quantified in plasma and brain homogenate of rats pre-treated with this drug using the internal standard calibration method. By means of this method, a linear correlation between plasma and brain concentration of MPH in rodents pre-treated with MPH was detected. The simple sample preparation based on liquid-liquid extraction and MALDI-MS/MS measurement requires approximately 10 s per sample, and this significantly reduces analysis time compared with other analytical methods. To the best of our knowledge, this is the first MALDI-MS/MS method for quantification of MPH in rat plasma and brain. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Anne Arnold
- Cluster of Excellence 'Macromolecular Complexes', Department of Pharmaceutical Chemistry, School of Pharmacy, Goethe University, Frankfurt, Germany
| | - Markus Persike
- Cluster of Excellence 'Macromolecular Complexes', Department of Pharmaceutical Chemistry, School of Pharmacy, Goethe University, Frankfurt, Germany
| | - Jan Gorka
- Cluster of Excellence 'Macromolecular Complexes', Department of Pharmaceutical Chemistry, School of Pharmacy, Goethe University, Frankfurt, Germany
| | - Eleanor J Dommett
- Brain and Behavioural Sciences, Department of Life, Health and Chemical Sciences, Biomedical Research Network, The Open University, Milton Keynes, UK
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Martina Zimmermann
- Department of Pharmacology, School of Pharmacy, Goethe University, Frankfurt, Germany
| | - Michael Karas
- Cluster of Excellence 'Macromolecular Complexes', Department of Pharmaceutical Chemistry, School of Pharmacy, Goethe University, Frankfurt, Germany
| |
Collapse
|
4
|
Patrick KS, Corbin TR, Murphy CE. Ethylphenidate as a selective dopaminergic agonist and methylphenidate-ethanol transesterification biomarker. J Pharm Sci 2014; 103:3834-3842. [PMID: 25303048 DOI: 10.1002/jps.24202] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 09/18/2014] [Accepted: 09/18/2014] [Indexed: 01/19/2023]
Abstract
We review the pharmaceutical science of ethylphenidate (EPH) in the contexts of drug discovery, drug interactions, biomarker for dl-methylphenidate (MPH)-ethanol exposure, potentiation of dl-MPH abuse liability, contemporary "designer drug," pertinence to the newer transdermal and chiral switch MPH formulations, as well as problematic internal standard. d-EPH selectively targets the dopamine transporter, whereas d-MPH exhibits equipotent actions at dopamine and norepinephrine transporters. This selectivity carries implications for the advancement of tailored attention-deficit/hyperactivity disorder (ADHD) pharmacotherapy in the era of genome-based diagnostics. Abuse of dl-MPH often involves ethanol coabuse. Carboxylesterase 1 enantioselectively transesterifies l-MPH with ethanol to yield l-EPH accompanied by significantly increased early exposure to d-MPH and rapid potentiation of euphoria. The pharmacokinetic component of this drug interaction can largely be avoided using dexmethylphenidate (dexMPH). This notwithstanding, maximal potentiated euphoria occurs following dexMPH-ethanol. C57BL/6 mice model dl-MPH-ethanol interactions: an otherwise depressive dose of ethanol synergistically increases dl-MPH stimulation; a substimulatory dose of dl-MPH potentiates a low, stimulatory dose of ethanol; ethanol elevates blood, brain, and urinary d-MPH concentrations while forming l-EPH. Integration of EPH preclinical neuropharmacology with clinical studies of MPH-ethanol interactions provides a translational approach toward advancement of ADHD personalized medicine and management of comorbid alcohol use disorder.
Collapse
Affiliation(s)
- Kennerly S Patrick
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina 29425-1400.
| | - Timothy R Corbin
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina 29425-1400
| | - Cristina E Murphy
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina 29425-1400
| |
Collapse
|
5
|
Allen SA, Pond BB. Chromatographic and electrophoretic strategies for the chiral separation and quantification of d- and l-threomethylphenidate in biological matrices. Biomed Chromatogr 2014; 28:1554-64. [DOI: 10.1002/bmc.3312] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 07/10/2014] [Accepted: 07/17/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Serena A. Allen
- Bill Gatton College of Pharmacy, East Tennessee State University; Pharmaceutical Sciences; Johnson City TN 37614 USA
| | - Brooks B. Pond
- Bill Gatton College of Pharmacy, East Tennessee State University; Pharmaceutical Sciences; Johnson City TN 37614 USA
| |
Collapse
|
6
|
Griffin WC, McGovern RW, Bell GH, Randall PK, Middaugh LD, Patrick KS. Interactive effects of methylphenidate and alcohol on discrimination, conditioned place preference and motor coordination in C57BL/6J mice. Psychopharmacology (Berl) 2013; 225:613-25. [PMID: 22955568 PMCID: PMC3547134 DOI: 10.1007/s00213-012-2849-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 08/10/2012] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Prior research indicates methylphenidate (MPH) and alcohol (ethanol, EtOH) interact to significantly affect responses humans and mice. The present studies tested the hypothesis that MPH and EtOH interact to potentiate ethanol-related behaviors in mice. METHODS We used several behavioral tasks including: drug discrimination in MPH-trained and EtOH-trained mice, conditioned place preference (CPP), rota-rod and the parallel rod apparatus. We also used gas chromatographic methods to measure brain tissue levels of EtOH and the D- and L-isomers of MPH and the metabolite, ethylphenidate (EPH). RESULTS In discrimination, EtOH (1 g/kg) produced a significant leftward shift in the MPH generalization curve (1-2 mg/kg) for MPH-trained mice, but no effects of MPH (0.625-1.25 mg/kg) on EtOH discrimination in EtOH-trained mice (0-2.5 g/kg) were observed. In CPP, the MPH (1.25 mg/kg) and EtOH (1.75 g/kg) combination significantly increased time on the drug paired side compared to vehicle (30.7 %), but this was similar to MPH (28.8 %) and EtOH (33.6 %). Footslip errors measured in a parallel rod apparatus indicated that the drug combination was very ataxic, with footslips increasing 29.5 % compared to EtOH. Finally, brain EtOH concentrations were not altered by 1.75 g/kg EtOH combined with 1.25 mg/kg MPH. However, EtOH significantly increased D-MPH and L-EPH without changing L-MPH brain concentrations. CONCLUSIONS The enhanced behavioral effects when EtOH is combined with MPH are likely due to the selective increase in brain D-MPH concentrations. These studies are consistent with observations in humans of increased interoceptive awareness of the drug combination and provide new clinical perspectives regarding enhanced ataxic effects of this drug combination.
Collapse
Affiliation(s)
- William C. Griffin
- Charleston Alcohol Research Center, Center for Drug and Alcohol Programs, Department of Psychiatry and Behavioral Science, Medical University of South Carolina, Charleston, SC 29425-0742
| | | | - Guinevere H. Bell
- Department of Pharmaceutical and Biomedical Sciences Medical University of South Carolina, Charleston, SC 29425-0742
| | - Patrick K. Randall
- Charleston Alcohol Research Center, Center for Drug and Alcohol Programs, Department of Psychiatry and Behavioral Science, Medical University of South Carolina, Charleston, SC 29425-0742
| | - Lawrence D. Middaugh
- Charleston Alcohol Research Center, Center for Drug and Alcohol Programs, Department of Psychiatry and Behavioral Science, Medical University of South Carolina, Charleston, SC 29425-0742
,Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425-0742
| | - Kennerly S. Patrick
- Department of Pharmaceutical and Biomedical Sciences Medical University of South Carolina, Charleston, SC 29425-0742
| |
Collapse
|
7
|
Patrick KS, Straughn AB, Reeves OT, Bernstein H, Bell GH, Anderson ER, Malcolm RJ. Differential influences of ethanol on early exposure to racemic methylphenidate compared with dexmethylphenidate in humans. Drug Metab Dispos 2013; 41:197-205. [PMID: 23104969 PMCID: PMC3533423 DOI: 10.1124/dmd.112.048595] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 10/25/2012] [Indexed: 11/22/2022] Open
Abstract
Enantioselective hydrolysis of oral racemic methylphenidate (dl-MPH) by carboxylesterase 1 (CES1) limits the absolute bioavailability of the pharmacologically active d-MPH isomer to approximately 30% and that of the inactive l-MPH to only 1-2%. Coadministration of dl-MPH with ethanol results in elevated d-MPH plasma concentrations accompanied by CES1-mediated enantioselective transesterification of l-MPH to l-ethylphenidate (EPH). The present study tested the hypothesis that administration of the pure isomer dexmethylphenidate (d-MPH) will overcome the influence of ethanol on d-MPH absorption by eliminating competitive CES1-mediated presystemic metabolism of l-MPH to l-EPH. Twenty-four healthy volunteers received dl-MPH (0.3 mg/kg) or d-MPH (0.15 mg/kg), with or without ethanol (0.6 g/kg). During the absorption phase of dl-MPH, concomitant ethanol significantly elevated d-MPH plasma concentrations (44-99%; P < 0.005). Furthermore, immediately following the ethanol drink the subjective effects of "high," "good," "like," "stimulated," and overall "effect" were significantly potentiated (P ≤ 0.01). Plasma l-EPH concentrations exceeded those of l-MPH. Ethanol combined with pure d-MPH did not elevate plasma d-MPH concentrations during the absorption phase, and the ethanol-induced potentiation of subjective effects was delayed relative to dl-MPH-ethanol. These findings are consistent with l-MPH competitively inhibiting presystemic CES1 metabolism of d-MPH. Ethanol increased the d-MPH area under the curve (AUC)(0-inf) by 21% following dl-MPH (P < 0.001) and 14% for d-MPH (P = 0.001). In men receiving d-MPH-ethanol, the d-MPH absorption partial AUC(0.5-2 hours) was 2.1 times greater and the time to maximum concentration (T(max)) occurred 1.1 hours earlier than in women, consistent with an increased rate of d-MPH absorption reducing hepatic extraction. More rapid absorption of d-MPH carries implications for increased abuse liability.
Collapse
Affiliation(s)
- Kennerly S Patrick
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, USA.
| | | | | | | | | | | | | |
Collapse
|
8
|
Schwaninger AE, Meyer MR, Maurer HH. Chiral drug analysis using mass spectrometric detection relevant to research and practice in clinical and forensic toxicology. J Chromatogr A 2012; 1269:122-35. [DOI: 10.1016/j.chroma.2012.07.045] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Revised: 07/14/2012] [Accepted: 07/17/2012] [Indexed: 12/01/2022]
|
9
|
Jin H, Thangadurai TD, Jo SC, Jin D, Cui S, Lee YI. On-line chiral analysis of benzylmercapturic acid and phenylmercapturic acid in human urine using UPLC-QToF mass spectrometry with the kinetic method. Microchem J 2012. [DOI: 10.1016/j.microc.2012.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
10
|
Gas chromatography–negative ion chemical ionisation mass spectrometry using o-(pentafluorobenzyloxycarbonyl)-2,3,4,5-tetrafluorobenzoyl derivatives for the quantitative determination of methylphenidate in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:2299-303. [DOI: 10.1016/j.jchromb.2011.06.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 05/05/2011] [Accepted: 06/07/2011] [Indexed: 11/24/2022]
|
11
|
Quantitative determination of methylphenidate in plasma by gas chromatography negative ion chemical ionisation mass spectrometry using o-(pentafluorobenzyloxycarbonyl)-benzoyl derivatives. Anal Bioanal Chem 2011; 400:2663-70. [DOI: 10.1007/s00216-011-5048-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 03/23/2011] [Accepted: 04/19/2011] [Indexed: 10/18/2022]
|
12
|
Meyer MR, Maurer HH. Absorption, distribution, metabolism and excretion pharmacogenomics of drugs of abuse. Pharmacogenomics 2011; 12:215-33. [DOI: 10.2217/pgs.10.171] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pharmacologic and toxic effects of xenobiotics, such as drugs of abuse, depend on the genotype and phenotype of an individual, and conversely on the isoenzymes involved in their metabolism and transport. The current knowledge of such isoenzymes of frequently abused therapeutics such as opioids (oxycodone, hydrocodone, methadone, fentanyl, buprenorphine, tramadol, heroin, morphine and codeine), anesthetics (γ-hydroxybutyric acid, propofol, ketamine and phencyclidine) and cognitive enhancers (methylphenidate and modafinil), and some important plant-derived hallucinogens (lysergide, salvinorin A, psilocybin and psilocin), as well as of nicotine in humans are summarized in this article. The isoenzymes (e.g., cytochrome P450, glucuronyltransferases, esterases and reductases) involved in the metabolism of drugs and some pharmacokinetic data are discussed. The relevance of such data is discussed for predicting possible interactions with other xenobiotics, understanding pharmacokinetic behavior and pharmacogenomic variations, assessing toxic risks, developing suitable toxicological analysis procedures, and finally for interpretating drug testing results.
Collapse
Affiliation(s)
- Markus R Meyer
- Department of Experimental & Clinical Toxicology, Institute of Experimental & Clinical Pharmacology & Toxicology, Saarland University, D 66421 Homburg (Saar), Germany
| | | |
Collapse
|
13
|
Bell GH, Novak AJ, Griffin WC, Patrick KS. Transdermal and oral dl-methylphenidate-ethanol interactions in C57BL/6J mice: transesterification to ethylphenidate and elevation of d-methylphenidate concentrations. J Pharm Sci 2011; 100:2966-78. [PMID: 21240977 DOI: 10.1002/jps.22476] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 10/12/2010] [Accepted: 12/13/2010] [Indexed: 01/17/2023]
Abstract
We tested the hypothesis that C57BL/6J mice will model human metabolic interactions between dl-methylphenidate (MPH) and ethanol, placing an emphasis on the MPH transdermal system (MTS). Specifically, we asked: (1) will ethanol increase d-MPH biological concentrations, (2) will MTS facilitate the systemic bioavailability of l-MPH, and (3) will l-MPH enantioselectively interact with ethanol to yield l-ethylphenidate (l-EPH)? Mice were dosed with MTS (¼ of a 12.5 cm(2) patch on shaved skin) or a comparable oral dl-MPH dose (7.5 mg/kg), with or without ethanol (3.0 g/kg), and then placed in metabolic cages for 3 h. MPH and EPH isomer concentrations in blood, brain, and urine were analyzed by gas chromatographic-mass spectrometry monitoring of N-(S)-prolylpiperidyl fragments. As in humans, MTS greatly facilitated the absorption of l-MPH in this mouse strain. Similarly, ethanol led to the enantioselective formation of l-EPH and to an elevation in d-MPH concentrations with both MTS and oral MPH. Although only guarded comparisons between MTS and oral MPH can be made due to route-dependent drug absorption rate differences, MTS was associated with significant MPH-ethanol interactions. Ethanol-mediated increases in circulating concentrations of d-MPH carry toxicological and abuse liability implications should this animal model hold for ethanol-consuming attention-deficit hyperactivity disorder patients or coabusers.
Collapse
Affiliation(s)
- Guinevere H Bell
- Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina 29425, USA.
| | | | | | | |
Collapse
|
14
|
Patrick KS, Straughn AB, Perkins JS, González MA. Evolution of stimulants to treat ADHD: transdermal methylphenidate. Hum Psychopharmacol 2009; 24:1-17. [PMID: 19051222 PMCID: PMC2629554 DOI: 10.1002/hup.992] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE The following comprehensive review describes the evolution of stimulant drug formulations used in the treatment of attention-deficit/hyperactivity disorder (ADHD). Emphasis is placed on the basic and clinical pharmacology of the dl-methylphenidate (MPH) transdermal system (MTS). METHODS The pharmacokinetic and pharmacodynamic literature pertaining to MPH and amphetamine enantiomers was reviewed in the context of ADHD therapy and MTS as a treatment option. RESULTS MTS incorporates MPH into an adhesive monolithic matrix, using the free base form of the drug to facilitate transdermal absorption. MTS technology minimizes contact dermatitis by eliminating to need for percutaneous penetration enhancers. After a lag time of approximately 2 h, plasma concentrations of the therapeutic d-MPH isomer become detectable, then continuously rise over the course of the recommended 9 h wear time. Concentrations of l-MPH typically attain 40-50% that of d-MPH (vs. 1-2% following oral MPH). Unauthorized MTS removal poses some misuse liability and over 50% of MTS drug content remains in the discarded system. CONCLUSIONS While liquid or chewable MPH formulations overcome potential swallowing difficulties, as do sprinkled once-daily extended-release (ER) MPH products, only MTS addresses swallowing difficulties while also offering a flexible individualized MPH exposure time in a once-daily MPH regimen.
Collapse
Affiliation(s)
- Kennerly S. Patrick
- Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina, USA,Correspondence to: K. S. Patrick, 280 Calhoun St., QF221A, Medical University of South Carolina, Charleston, SC 29425−0742, USA. Tel: (843) 792−8429. Fax: (843) 792−1617. E-mail:
| | - Arthur B. Straughn
- Department of Pharmaceutical Sciences, University of Tennessee, Memphis, Tennessee, USA
| | - Jeb S. Perkins
- Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | | |
Collapse
|