1
|
Korzhikova-Vlakh EG, Platonova GA, Tennikova TB. Macroporous Polymer Monoliths for Affinity Chromatography and Solid-Phase Enzyme Processing. Methods Mol Biol 2021; 2178:251-284. [PMID: 33128755 DOI: 10.1007/978-1-0716-0775-6_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nowadays, monolithic stationary phases, because of their special morphology and enormous permeability, are widely used for the development and realization of fast dynamic and static processes based on the mass transition between liquid and solid phases. These are liquid chromatography, solid-phase synthesis, microarrays, flow-through enzyme reactors, etc. High-performance liquid chromatography on monoliths, including the bioaffinity mode, represents unique technique appropriate for fast and efficient separation of biological (macro)molecules of different sizes and shapes (proteins, nucleic acids, peptides), as well as such supramolecular systems as viruses.In the edited chapter, the examples of the application of commercially available macroporous monoliths for modern affinity processing are presented. In particular, the original methods developed for efficient isolation and fractionation of monospecific antibodies from rabbit blood sera, the possibility of simultaneous affinity separation of protein G and serum albumin from human serum, the isolation of recombinant products, such as protein G and tissue plasminogen activator, respectively, are described in detail. The suggested and realized multifunctional fractionation of polyclonal pools of antibodies by the combination of several short monolithic columns (disks) with different affinity functionalities stacked in the same cartridge represents the original and practically valuable method that can be used in biotechnology. In addition, macroporous monoliths were adapted to the immobilization of such different enzymes as polynucleotide phosphorylase, ribonuclease A, α-chymotrypsin, chitinolytic biocatalysts, β-xylosidase, and β-xylanase. The possibility of use of immobilized enzyme reactors based on monoliths for different purposes is demonstrated.
Collapse
Affiliation(s)
- E G Korzhikova-Vlakh
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg, Russia
| | - G A Platonova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg, Russia
| | - T B Tennikova
- Institute of Chemistry, Saint-Petersburg State University, St. Petersburg, Russia.
| |
Collapse
|
2
|
Mao Y, Kulozik U. Selective hydrolysis of whey proteins using a flow-through monolithic reactor with large pore size and immobilised trypsin. Int Dairy J 2018. [DOI: 10.1016/j.idairyj.2018.05.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
3
|
Levit M, Zashikhina N, Dobrodumov A, Kashina A, Tarasenko I, Panarin E, Fiorucci S, Korzhikova-Vlakh E, Tennikova T. Synthesis and characterization of well-defined poly(2-deoxy-2-methacrylamido-d-glucose) and its biopotential block copolymers via RAFT and ROP polymerization. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.05.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
4
|
Macroporous monoliths for biodegradation study of polymer particles considered as drug delivery systems. J Pharm Biomed Anal 2017; 145:169-177. [DOI: 10.1016/j.jpba.2017.06.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/14/2017] [Accepted: 06/15/2017] [Indexed: 11/18/2022]
|
5
|
Volokitina MV, Nikitina AV, Tennikova TB, Korzhikova-Vlakh EG. Immobilized enzyme reactors based on monoliths: Effect of pore size and enzyme loading on biocatalytic process. Electrophoresis 2017; 38:2931-2939. [DOI: 10.1002/elps.201700210] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 04/09/2017] [Accepted: 04/09/2017] [Indexed: 01/05/2023]
Affiliation(s)
- Mariia V. Volokitina
- Russian Academy of Sciences; Institute of Macromolecular Compounds; St. Petersburg Russia
- Institute of Chemistry; Saint-Petersburg State University; St. Petersburg Russia
| | - Anna V. Nikitina
- Institute of Chemistry; Saint-Petersburg State University; St. Petersburg Russia
| | - Tatiana B. Tennikova
- Institute of Chemistry; Saint-Petersburg State University; St. Petersburg Russia
| | - Evgenia G. Korzhikova-Vlakh
- Russian Academy of Sciences; Institute of Macromolecular Compounds; St. Petersburg Russia
- Institute of Chemistry; Saint-Petersburg State University; St. Petersburg Russia
| |
Collapse
|
6
|
Chen WQ, Obermayr P, Černigoj U, Vidič J, Panić-Janković T, Mitulović G. Immobilized monolithic enzymatic reactor and its application for analysis of in-vitro fertilization media samples. Electrophoresis 2017; 38:2957-2964. [DOI: 10.1002/elps.201700197] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 05/29/2017] [Accepted: 06/04/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Wei-Qiang Chen
- Clinical Institute of Laboratory Medicine; Medical University of Vienna; Vienna Austria
| | | | | | - Jana Vidič
- BIA Separations d.o.o; Ajdovščina Slovenia
| | - Tanta Panić-Janković
- Clinical Institute of Laboratory Medicine; Medical University of Vienna; Vienna Austria
| | - Goran Mitulović
- Clinical Institute of Laboratory Medicine; Medical University of Vienna; Vienna Austria
- Proteomics Core Facility; Medical University of Vienna; Vienna Austria
| |
Collapse
|
7
|
Sandig B, Buchmeiser MR. Highly Productive and Enantioselective Enzyme Catalysis under Continuous Supported Liquid-Liquid Conditions Using a Hybrid Monolithic Bioreactor. CHEMSUSCHEM 2016; 9:2917-2921. [PMID: 27650312 DOI: 10.1002/cssc.201600994] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 07/29/2016] [Indexed: 06/06/2023]
Abstract
Enzyme-containing ionic liquids (ILs) were immobilized in cellulose-2.5-acetate microbeads particles embedded in a porous monolithic polyurethane matrix. This bioreactor was used under continuous liquid-liquid conditions by dissolving the substrates in a nonpolar organic phase immiscible with the ILs, thereby creating a biphasic system. Lipases (candida antarctica lipase B, CALB, candida rugosa lipase, CRL) were used to catalyze the enantioselective transesterification of racemic (R,S)-1-phenylethanol with vinyl butyrate and vinyl acetate, the esterification of (+/-)-2-isopropyl-5-methylcyclohexanol with propionic anhydride and the amidation of (R,S)-1-phenylethylamine with ethyl methoxyacetate. With this unique setup, very high productivities, that is, turnover numbers (TONs) up to 5.1×106 and space-time yields (STYs) up to 28 g product L-1 h-1 , exceeding the corresponding values for batch-type reactions by a factor of 3100 and 40, respectively, were achieved while maintaining or even enhancing enantioselectivity compared to batch reactions via kinetic resolution. To our best knowledge, this is the first continuously operated bioreactor using supported liquid-liquid conditions that shows these features in the synthesis of chiral esters and amides.
Collapse
Affiliation(s)
- Bernhard Sandig
- Institut für Polymerchemie, Universität Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Michael R Buchmeiser
- Institut für Polymerchemie, Universität Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany.
| |
Collapse
|
8
|
Preparation, Characterization, and Biological Evaluation of Poly(Glutamic Acid)-b-Polyphenylalanine Polymersomes. Polymers (Basel) 2016; 8:polym8060212. [PMID: 30979309 PMCID: PMC6432269 DOI: 10.3390/polym8060212] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/22/2016] [Accepted: 05/25/2016] [Indexed: 12/04/2022] Open
Abstract
Different types of amphiphilic macromolecular structures have been developed within recent decades to prepare the polymer particles considered as drug delivery systems. In the present research the series of amphiphilic block-copolymers containing poly(glutamatic acid) as hydrophilic, and polyphenylalanine as hydrophobic blocks was synthesized and characterized. Molecular weights for homo- and copolymers were determined by gel-permeation chromatography (GPC) and amino acid analysis, respectively. The copolymers obtained were applied for preparation of polymer particles. The specific morphology of prepared polymerosomes was proved using transmission electron microscopy (TEM). The influence on particle size of polymer concentration and pH used for self-assembly, as well as on the length of hydrophobic and hydrophilic blocks of applied copolymers, was studied by dynamic light scattering (DLS). Depending on different experimental conditions, the formation of nanoparticles with sizes from 60 to 350 nm was observed. The surface of polymersomes was modified with model protein (enzyme). No loss in biocatalytic activity was detected. Additionally, the process of encapsulation of model dyes was developed and the possibility of intracellular delivery of the dye-loaded nanoparticles was proved. Thus, the nanoparticles discussed can be considered for the creation of modern drug delivery systems.
Collapse
|
9
|
Physisorption of α-chymotrypsin on SiO2 and TiO2: A comparative study via experiments and molecular dynamics simulations. Biointerphases 2016; 11:011007. [DOI: 10.1116/1.4940701] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
10
|
Derr L, Dringen R, Treccani L, Hildebrand N, Ciacchi LC, Rezwan K. Physisorption of enzymatically active chymotrypsin on titania colloidal particles. J Colloid Interface Sci 2015; 455:236-44. [DOI: 10.1016/j.jcis.2015.05.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/12/2015] [Accepted: 05/12/2015] [Indexed: 10/23/2022]
|
11
|
Sandig B, Michalek L, Vlahovic S, Antonovici M, Hauer B, Buchmeiser MR. A Monolithic Hybrid Cellulose-2.5-Acetate/Polymer Bioreactor for Biocatalysis under Continuous Liquid-Liquid Conditions Using a Supported Ionic Liquid Phase. Chemistry 2015; 21:15835-42. [DOI: 10.1002/chem.201501618] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Indexed: 11/06/2022]
|
12
|
Volokitina MV, Bobrov KS, Piens K, Eneyskaya EV, Tennikova TB, Vlakh EG, Kulminskaya AA. Xylan degradation improved by a combination of monolithic columns bearing immobilized recombinant β-xylosidase from Aspergillus awamori X-100 and Grindamyl H121 β-xylanase. Biotechnol J 2014; 10:210-21. [PMID: 25367775 DOI: 10.1002/biot.201400417] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 10/17/2014] [Accepted: 11/03/2014] [Indexed: 11/12/2022]
Abstract
Synergistic action of exo- and endohydrolazes is preferred for effective destruction of biopolymers. The main purpose of the present work was to develop an efficient tool for degradation of xylan. Macroporous lab-made monolithic columns and commercial CIM-Epoxy disk were used to immobilize the recombinant β-xylosidase from Aspergillus awamori and Grindamyl β-xylanase. The efficiency of xylan degradation using the low-loaded β-xylosidase column appeared to be four times higher than for the in-solution process and about six times higher than for the high-loaded bioreactor. Disk bioreactor with the Grindamil β-xylanase operated in a recirculation mode has shown noticeable advantages over the column design. Additionally, a system comprised of two immobilized enzyme reactors (IMERs) was tested to accelerate the biopolymer hydrolysis, yielding total xylan conversion into xylose within 20 min. Fast online monitoring HPLC procedure was developed where an analytical DEAE CIM disk was added to the two-enzyme system in a conjoint mode. A loss of activity of immobilized enzymes did not exceed 7% after 5 months of the bioreactor usage. We can therefore conclude that the bioreactors developed exhibit high efficiency and remarkable long-term stability.
Collapse
Affiliation(s)
- Maria V Volokitina
- Russian Academy of Sciences, Institute of Macromolecular Compounds, St. Petersburg, Russia; Saint-Petersburg State University, Institute of Chemistry, St. Petersburg, Russia
| | | | | | | | | | | | | |
Collapse
|
13
|
Hong T, Chi C, Ji Y. Pepsin-modified chiral monolithic column for affinity capillary electrochromatography. J Sep Sci 2014; 37:3377-83. [DOI: 10.1002/jssc.201400424] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 08/10/2014] [Accepted: 08/10/2014] [Indexed: 01/31/2023]
Affiliation(s)
- Tingting Hong
- Department of Analytical Chemistry; China Pharmaceutical University; Nanjing China
- Key Laboratory of Drug Quality Control and Pharmacovigilance; Ministry of Education; Nanjing China
| | - Cuijie Chi
- Department of Analytical Chemistry; China Pharmaceutical University; Nanjing China
- Key Laboratory of Drug Quality Control and Pharmacovigilance; Ministry of Education; Nanjing China
| | - Yibing Ji
- Department of Analytical Chemistry; China Pharmaceutical University; Nanjing China
- Key Laboratory of Drug Quality Control and Pharmacovigilance; Ministry of Education; Nanjing China
| |
Collapse
|
14
|
Krupenya DV, Snegurov PA, Grachova EV, Gurzhiy VV, Tunik SP, Melnikov AS, Serdobintsev PY, Vlakh EG, Sinitsyna ES, Tennikova TB. New Supramolecular AuI–CuI Complex as Potential Luminescent Label for Proteins. Inorg Chem 2013; 52:12521-8. [DOI: 10.1021/ic401569n] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- D. V. Krupenya
- Department
of Chemistry, St. Petersburg State University, Universitesky pr. 26, 198504 St. Petersburg, Russia
| | - P. A. Snegurov
- Department
of Chemistry, St. Petersburg State University, Universitesky pr. 26, 198504 St. Petersburg, Russia
| | - E. V. Grachova
- Department
of Chemistry, St. Petersburg State University, Universitesky pr. 26, 198504 St. Petersburg, Russia
| | - V. V. Gurzhiy
- Department
of Chemistry, St. Petersburg State University, Universitesky pr. 26, 198504 St. Petersburg, Russia
| | - S. P. Tunik
- Department
of Chemistry, St. Petersburg State University, Universitesky pr. 26, 198504 St. Petersburg, Russia
| | - A. S. Melnikov
- Department of Physics, St. Petersburg State University, Ulianovskaya st. 3, 198504 St. Petersburg, Russia
| | - P. Yu. Serdobintsev
- Department of Physics, St. Petersburg State University, Ulianovskaya st. 3, 198504 St. Petersburg, Russia
| | - E. G. Vlakh
- Department of Chemistry, St. Petersburg State University, Universitesky
pr. 26, 198504 St.
Petersburg, Russia
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia
| | - E. S. Sinitsyna
- Department of Chemistry, St. Petersburg State University, Universitesky
pr. 26, 198504 St.
Petersburg, Russia
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia
| | - T. B. Tennikova
- Department of Chemistry, St. Petersburg State University, Universitesky
pr. 26, 198504 St.
Petersburg, Russia
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia
| |
Collapse
|
15
|
Comparison of activity behaviors of particle based and monolithic immobilized enzyme reactors operated in semi-micro-liquid chromatography system. Sep Purif Technol 2013. [DOI: 10.1016/j.seppur.2013.07.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Volokitina MV, Vlakh EG, Platonova GA, Vinokhodov DO, Tennikova TB. Polymer monoliths as efficient solid phases for enzymatic polynucleotide degradation followed by fast HPLC analysis. J Sep Sci 2013; 36:2793-805. [PMID: 23813658 DOI: 10.1002/jssc.201300406] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 06/10/2013] [Accepted: 06/10/2013] [Indexed: 11/09/2022]
Abstract
Two ribonuclease A bioreactors based on lab-made macroporous monolithic columns and intended for polynucleotide degradation were prepared using in situ free-radical polymerization. Different methods of enzyme immobilization were applied. In the first case, the biocatalyst molecule was attached to the solid surface via direct covalent binding, while in the second bioreactor the flexible-chain synthetic polymer was used as an intermediate spacer. The effect of temperature, substrate flow rate, and loaded sample volume on the biocatalytic efficiency of the immobilized enzyme was examined. The kinetic parameters of the enzymatic degradation of synthetic polycytidylic acid were calculated and compared to those found for hydrolysis with soluble ribonuclease A. The monitoring of substrate splitting was carried out by means of fast anion-exchange HPLC on an ultra-short monolithic column (disk) using off- and on-line analytical approaches.
Collapse
Affiliation(s)
- M V Volokitina
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg, Russia
| | | | | | | | | |
Collapse
|
17
|
Vlakh EG, Tennikova TB. Flow-through immobilized enzyme reactors based on monoliths: II. Kinetics study and application. J Sep Sci 2013; 36:1149-67. [DOI: 10.1002/jssc.201201090] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 12/17/2012] [Accepted: 12/17/2012] [Indexed: 11/10/2022]
Affiliation(s)
- Evgenia G. Vlakh
- Institute of Macromolecular Compounds; Russian Academy of Sciences; St. Petersburg Russia
- Faculty of Chemistry; Saint-Petersburg State University; St. Petersburg Russia
| | - Tatiana B. Tennikova
- Institute of Macromolecular Compounds; Russian Academy of Sciences; St. Petersburg Russia
- Faculty of Chemistry; Saint-Petersburg State University; St. Petersburg Russia
| |
Collapse
|
18
|
|
19
|
Vlakh EG, Tennikova TB. Flow-through immobilized enzyme reactors based on monoliths: I. Preparation of heterogeneous biocatalysts. J Sep Sci 2013; 36:110-27. [DOI: 10.1002/jssc.201200594] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 08/13/2012] [Accepted: 08/13/2012] [Indexed: 11/11/2022]
Affiliation(s)
- Evgenia G. Vlakh
- Institute of Macromolecular Compounds; Russian Academy of Sciences; St. Petersburg Russia
- Faculty of Chemistry; Saint-Petersburg State University; St. Petersburg Russia
| | - Tatiana B. Tennikova
- Institute of Macromolecular Compounds; Russian Academy of Sciences; St. Petersburg Russia
- Faculty of Chemistry; Saint-Petersburg State University; St. Petersburg Russia
| |
Collapse
|
20
|
Biocatalytic reactors based on ribonuclease A immobilized on macroporous monolithic supports. Anal Bioanal Chem 2012; 405:2195-206. [DOI: 10.1007/s00216-012-6391-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 08/15/2012] [Accepted: 08/27/2012] [Indexed: 11/26/2022]
|
21
|
Xiao P, Lv X, Deng Y. Immobilization of Chymotrypsin on Silica Beads Based on High Affinity and Specificity Aptamer and Its Applications. ANAL LETT 2012. [DOI: 10.1080/00032719.2012.673103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
22
|
Multidimensional nano-HPLC coupled with tandem mass spectrometry for analyzing biotinylated proteins. Anal Bioanal Chem 2012; 405:2163-73. [DOI: 10.1007/s00216-012-6057-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 04/12/2012] [Accepted: 04/16/2012] [Indexed: 10/28/2022]
|
23
|
Çelebi B, Bayraktar A, Tuncel A. Synthesis of a monolithic, micro-immobilised enzyme reactor via click-chemistry. Anal Bioanal Chem 2012; 403:2655-63. [DOI: 10.1007/s00216-012-6075-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 04/19/2012] [Accepted: 04/21/2012] [Indexed: 10/28/2022]
|
24
|
Salwiński A, Delépée R, Maunit B. Continuous-flow step gradient mass spectrometry based method for the determination of kinetic parameters of immobilized mushroom tyrosinase in equilibrating conditions: comparison with free enzyme. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:3549-3554. [PMID: 22095503 DOI: 10.1002/rcm.5268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A mass spectrometry (MS)-based methodology for enzymatic assay in equilibrium conditions was designed and evaluated. This on-line assay involves the introduction of a continuous-flow step gradient (CFSG) of a substrate solution in the column containing immobilized enzyme and the simultaneous tracking of the product formation. We showed that the constant concentration of substrate in the entire bioreactor for an appropriate duration ensures the equilibration of the studied enzyme (mushroom tyrosinase). Under these conditions, it was demonstrated also that the kinetic and enzymatic parameters (Michaelis-Menten constant, K(M) , the maximal specific activity, SA(max)) are independent of the flow rate of the mobile phase. The feasibility of the mentioned approach for inhibitory tests was also investigated. The coupling of the mass spectrometer to the bio-reactor allows the selective monitoring of the enzymatic reaction products and increases their detection level. Very high sensitivity, 500 pmol/min/column, and selective monitoring of the products of the enzymatic reaction are allowed by MS detection. The methodology developed here constitutes a sensitive analytical tool to study enzymes requiring long equilibration times.
Collapse
Affiliation(s)
- Aleksander Salwiński
- Institute of Organic and Analytical Chemistry (ICOA), UMR CNRS 6005, University of Orleans, BP 6759, 45067 Orléans Cedex 2, France
| | | | | |
Collapse
|
25
|
Maksimova E, Vlakh E, Tennikova T. Methacrylate-based monolithic layers for planar chromatography of polymers. J Chromatogr A 2011; 1218:2425-31. [DOI: 10.1016/j.chroma.2010.12.061] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 12/13/2010] [Accepted: 12/14/2010] [Indexed: 10/18/2022]
|
26
|
A simple method of chymotrypsin concentration and purification from pancreas homogenate using Eudragit® L100 and Eudragit® S100. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:1003-7. [PMID: 21419720 DOI: 10.1016/j.jchromb.2011.02.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 02/19/2011] [Accepted: 02/21/2011] [Indexed: 11/23/2022]
Abstract
The condition of chymotrypsin (ChTRP)-Eudragit® (Eu) insoluble complex formation was studied with the aim of applying this information to the separation of chymotrypsin from a crude filtrate of bovine pancreas homogenate. The optimal pH of the complex precipitation was 4.60 for ChTRP-Eudragit® L100 and 5.40 for ChTRP-Eudragit® S100. The polyelectrolyte concentration necessary for the commercial enzyme precipitation was lower than 0.1% (w/v). The complex formation was inhibited by NaCl for both polyelectrolytes. The method was applied to recover the enzyme from bovine homogenate; ChTRP was precipitated by Eudragit® addition. The non-soluble complexes were separated by simple centrifugation and re-dissolved by a pH change to 8.20. The best conditions to recover ChTRP brought about a purification factor of around 4 and 90% yield.
Collapse
|
27
|
Akkaya A, Uslan AH. Sequential immobilization of urease to glycidyl methacrylate grafted sodium alginate. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.molcatb.2010.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
28
|
Elsner C, Ernst C, Buchmeiser MR. Miniaturized biocatalysis on polyacrylate-based capillary monoliths. J Appl Polym Sci 2010. [DOI: 10.1002/app.32657] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|