1
|
Shi Y, Zhong G, Huang H, Li N, Zeng J, Zhu J, Yuan J, Liang J. Comparative pharmacokinetics of five primary constituents in Huai-hua powder: a study on normal rats and rats with ulcerative colitis. J Pharm Pharmacol 2024; 76:1160-1168. [PMID: 38913100 DOI: 10.1093/jpp/rgae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 05/08/2024] [Indexed: 06/25/2024]
Abstract
OBJECTIVES The goal of this research was to develop a fast, reliable, and sensitive method to simultaneously quantify five key components of Huai-hua Powder (HHP) in rat plasma with genistein served as the internal standard. Furthermore, the established method was used to perform a comparative evaluation of the pharmacokinetic properties of HHP in normal rats and rats with ulcerative colitis (UC). METHODS Chromatographic separation was conducted using an ACQUITY HSS T3 column held at a constant temperature of 35°C, with acetonitrile and a 0.1% formic acid solution in water employed as the mobile phases. Multiple-reaction monitoring facilitated MS operation in positive-negative-ion-switching mode. The method's validation demonstrated exceptional linearity (with a correlation coefficient of r ≥ 0.9970), and the validation tests, encompassing precision within and between days, accuracy, recovery, matrix effect, and stability; all met the predefined acceptable criteria. KEY FINDINGS The results revealed significant variations in the pharmacokinetic characteristics of the five components between normal and UC rats, suggesting altered drug metabolism rates and extents in the latter group. CONCLUSIONS These findings offer crucial scientific insights into the potential clinical application of HHP, particularly in the context of treating UC.
Collapse
Affiliation(s)
- Yiwei Shi
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Guoyue Zhong
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Huilian Huang
- Key Lab of Modern Preparations of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Nazhi Li
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Jinxiang Zeng
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Jixiao Zhu
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Jinbin Yuan
- Key Lab of Modern Preparations of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Jian Liang
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| |
Collapse
|
2
|
Chen Y, Zhang W, Li Q, Xie H, Xing S, Lu X, Lyu W, Xiong B, Wang Y, Qu W, Liu W, Chi H, Zhang X, Feng F, Sun H. Discovery of 4-benzylpiperazinequinoline BChE inhibitor that suppresses neuroinflammation for the treatment of Alzheimer's disease. Eur J Med Chem 2024; 272:116463. [PMID: 38704944 DOI: 10.1016/j.ejmech.2024.116463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/24/2024] [Accepted: 04/27/2024] [Indexed: 05/07/2024]
Abstract
Butyrylcholinesterase (BChE) has attracted wide interest as a promising target in Alzheimer's disease (AD) investigation. BChE is considered to play a compensable role of hydrolyzing acetylcholine (ACh), and its positive correlation with β-amyloid (Aβ) deposition also promotes disease progression. Herein, we uncovered a selective potent BChE inhibitor S21-1011 (eqBChE IC50 = 0.059 ± 0.006 μM, hBChE IC50 = 0.162 ± 0.069 μM), which presented satisfactory druggability and therapeutic efficacy in AD models. In pharmacokinetics (PK) studies, S21-1011 showed excellent blood-brain barrier (BBB) permeability, metabolism stability and high oral-bioavailability. In pharmacodynamic (PD) studies, it protected neural cells from toxicity and inflammation stimulation in vitro. Besides, it also exerted anti-inflammatory effect and alleviated cognitive impairment in mice models induced by lipopolysaccharides (LPS) and Aβ. Generally, this compound has been confirmed to function as a neuroprotector and cognition improver in various AD pathology-like models. Therefore, S21-1011, a novel potent BChE inhibitor, could be considered as a potential anti-AD candidate worthy of more profound investigation.
Collapse
Affiliation(s)
- Ying Chen
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, China
| | - Weiting Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Qi Li
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Huanfang Xie
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Shuaishuai Xing
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xin Lu
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Weiping Lyu
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Baichen Xiong
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yuanyuan Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Wei Qu
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Wenyuan Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Heng Chi
- Jiangsu Drug Development Engineering Center for Central Degenerative Disease, Jiangsu Food and Pharmaceuticals Science College, 223005, China
| | - Xiaolong Zhang
- Jiangsu Drug Development Engineering Center for Central Degenerative Disease, Jiangsu Food and Pharmaceuticals Science College, 223005, China
| | - Feng Feng
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China; Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, China.
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
3
|
Wu Y, Wang X, Yang L, Kang S, Yan G, Han Y, Fang H, Sun H. Potential of alisols as cancer therapeutic agents: Investigating molecular mechanisms, pharmacokinetics and metabolism. Biomed Pharmacother 2023; 168:115722. [PMID: 37865991 DOI: 10.1016/j.biopha.2023.115722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/24/2023] Open
Abstract
Albeit remarkable achievements in anti-cancer endeavors, the prevention and treatment of cancer remain unresolved challenges. Hence, there is an urgent need to explore new and efficacious natural compounds with potential anti-cancer therapeutic agents. One such group of compounds is alisols, tetracyclic triterpene alcohols extracted from alisma orientale. Alisols play a significant role in cancer therapy as they can suppress cancer cell proliferation and migration by regulating signaling pathways such as mTOR, Bax/Bcl-2, CHOP, caspase, NF-kB and IRE1. Pharmacokinetic studies showed that alisols can be absorbed entirely, rapidly, and evenly distributed in vivo. Moreover, alisols are low in toxicity and relatively safe to take. Remarkably, each alisol can be converted into many compounds with different pathways to their anti-cancer effects in the body. Thus, alisols are regarded as promising anti-cancer agents with minimal side effects and low drug resistance. This review will examine and discuss alisols' anti-cancer molecular mechanism, pharmacokinetics and metabolism. Based on a comprehensive analysis of nearly 20 years of research, we evaluate the therapeutic potential of alisols for various types of cancer and offer insights and strategies for developing new cancer treatments.
Collapse
Affiliation(s)
- Yinqi Wu
- State key laboratory of Integration and Innovation of Classical formula and modern Chinese medicine, National Chinmedomics Research Center, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Xijun Wang
- State key laboratory of Integration and Innovation of Classical formula and modern Chinese medicine, National Chinmedomics Research Center, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau; State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China.
| | - Le Yang
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China
| | - Shuyu Kang
- State key laboratory of Integration and Innovation of Classical formula and modern Chinese medicine, National Chinmedomics Research Center, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Guangli Yan
- State key laboratory of Integration and Innovation of Classical formula and modern Chinese medicine, National Chinmedomics Research Center, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Ying Han
- State key laboratory of Integration and Innovation of Classical formula and modern Chinese medicine, National Chinmedomics Research Center, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Heng Fang
- State key laboratory of Integration and Innovation of Classical formula and modern Chinese medicine, National Chinmedomics Research Center, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Hui Sun
- State key laboratory of Integration and Innovation of Classical formula and modern Chinese medicine, National Chinmedomics Research Center, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China.
| |
Collapse
|
4
|
Rong J, Fu F, Han C, Wu Y, Xia Q, Du D. Tectorigenin: A Review of Its Sources, Pharmacology, Toxicity, and Pharmacokinetics. Molecules 2023; 28:5904. [PMID: 37570873 PMCID: PMC10421414 DOI: 10.3390/molecules28155904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/26/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Tectorigenin is a well-known natural flavonoid aglycone and an active component that exists in numerous plants. Growing evidence suggests that tectorigenin has multiple pharmacological effects, such as anticancer, antidiabetic, hepatoprotective, anti-inflammatory, antioxidative, antimicrobial, cardioprotective, and neuroprotective. These pharmacological properties provide the basis for the treatment of many kinds of illnesses, including several types of cancer, diabetes, hepatic fibrosis, osteoarthritis, Alzheimer's disease, etc. The purpose of this paper is to provide a comprehensive summary and review of the sources, extraction and synthesis, pharmacological effects, toxicity, pharmacokinetics, and delivery strategy aspects of tectorigenin. Tectorigenin may exert certain cytotoxicity, which is related to the administration time and concentration. Pharmacokinetic studies have demonstrated that the main metabolic pathways in rats for tectorigenin are glucuronidation, sulfation, demethylation and methoxylation, but that it exhibits poor bioavailability. From our perspective, further research on tectorigenin should cover: exploring the pharmacological targets and mechanisms of action; finding an appropriate concentration to balance pharmacological effects and toxicity; attempting diversified delivery strategies to improve the bioavailability; and structural modification to obtain tectorigenin derivatives with higher pharmacological activity.
Collapse
Affiliation(s)
- Juan Rong
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China; (J.R.); (C.H.)
| | - Fei Fu
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; (F.F.); (Y.W.)
| | - Chenxia Han
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China; (J.R.); (C.H.)
| | - Yaling Wu
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; (F.F.); (Y.W.)
| | - Qing Xia
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China; (J.R.); (C.H.)
| | - Dan Du
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China; (J.R.); (C.H.)
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; (F.F.); (Y.W.)
- Proteomics-Metabolomics Platform, Research Core Facility, West China-Washington Mitochondria and Metabolism Centre, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
5
|
Ye L, Fan S, Zhao P, Wu C, Liu M, Hu S, Wang P, Wang H, Bi H. Potential herb‒drug interactions between anti-COVID-19 drugs and traditional Chinese medicine. Acta Pharm Sin B 2023; 13:S2211-3835(23)00203-4. [PMID: 37360014 PMCID: PMC10239737 DOI: 10.1016/j.apsb.2023.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/21/2023] [Accepted: 04/20/2023] [Indexed: 06/28/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread worldwide. Effective treatments against COVID-19 remain urgently in need although vaccination significantly reduces the incidence, hospitalization, and mortality. At present, antiviral drugs including Nirmatrelvir/Ritonavir (PaxlovidTM), Remdesivir, and Molnupiravir have been authorized to treat COVID-19 and become more globally available. On the other hand, traditional Chinese medicine (TCM) has been used for the treatment of epidemic diseases for a long history. Currently, various TCM formulae against COVID-19 such as Qingfei Paidu decoction, Xuanfei Baidu granule, Huashi Baidu granule, Jinhua Qinggan granule, Lianhua Qingwen capsule, and Xuebijing injection have been widely used in clinical practice in China, which may cause potential herb-drug interactions (HDIs) in patients under treatment with antiviral drugs and affect the efficacy and safety of medicines. However, information on potential HDIs between the above anti-COVID-19 drugs and TCM formulae is lacking, and thus this work seeks to summarize and highlight potential HDIs between antiviral drugs and TCM formulae against COVID-19, and especially pharmacokinetic HDIs mediated by metabolizing enzymes and/or transporters. These well-characterized HDIs could provide useful information on clinical concomitant medicine use to maximize clinical outcomes and minimize adverse and toxic effects.
Collapse
Affiliation(s)
- Ling Ye
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shicheng Fan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Pengfei Zhao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chenghua Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Menghua Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shuang Hu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Peng Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hongyu Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Huichang Bi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
6
|
Chen C, Li X, Kano Y, Yuan D, Qu J. Oriental traditional herbal Medicine--Puerariae Flos: A systematic review. JOURNAL OF ETHNOPHARMACOLOGY 2023; 306:116089. [PMID: 36621660 DOI: 10.1016/j.jep.2022.116089] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/23/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pueraria Flos (PF), a traditional herbal medicine, is botanically from the dried flowers of Pueraria lobate (Willd.) Ohwi. (Chinese: ) or Pueraria thomsonii Benth. (Chinese: ). It has a long history of thousands of years in China for awakening the spleen, clearing the lungs, relieving alcohol. AIM OF THE REVIEW This review aims to report the up-to-date research progress in ethnopharmacology, phytochemistry, pharmacology and toxicology, metabolism and therapeutic application of PF, so as to provide a strong basis for future clinical treatment and scientific research. MATERIALS AND METHODS Relevant information on PF was collected from scientific literature databases including PubMed, CNKI and other literature sources (Ph.D. and M.Sc. dissertations and Chinese herbal classic books) by using the keyword "Puerariae". RESULTS Briefly, phytochemical research report has isolated 39 flavonoids, 19 saponins and 25 volatile oils from PF. Flavonoids and saponins are the most important bioactive compounds, and most of the quality control studies focus on these two types of compounds. Modern pharmacological studies have revealed their significant biological activities in relieving alcoholism, hepatoprotective, anti-tumor, anti-inflammatory, and anti-oxidation, which provides theoretical support for the traditional use. CONCLUSIONS Comprehensive analysis showed that pharmacological activity of most purified compounds from PF had not been reported. Kakkalide, tectoridin and their deglycosylated metabolites (irisolidone and tectorigenin) has been focused on excessively due to their higher content and better activities. This leads to low development and resources waste. Interestingly, PF made a breakthrough in the field of food. Many kinds of fat-lowering foods such as PILLBOX Onaka have been popular in Japan market, which received extensive attention. Therefore, we suggest that future research can be paid attention on the development of the plant's function in the field of food and medicine, as well as the transformation from experimental to clinical.
Collapse
Affiliation(s)
- Cai Chen
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian, 116011, China; Institute of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian, 116044, China
| | - Xiaojie Li
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian, 116011, China; Institute (College) of Pharmacy, Dalian Medical University, No. 9, South Road of Lvshun, Dalian, 116044, China
| | - Yoshihiro Kano
- Department of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Dan Yuan
- Department of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China.
| | - Jialin Qu
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian, 116011, China; Department of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China.
| |
Collapse
|
7
|
Qu J, Chen Q, Wei T, Dou N, Shang D, Yuan D. Systematic characterization of Puerariae Flos metabolites in vivo and assessment of its protective mechanisms against alcoholic liver injury in a rat model. Front Pharmacol 2022; 13:915535. [PMID: 36110520 PMCID: PMC9468746 DOI: 10.3389/fphar.2022.915535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Puerariae Flos, a representative homology plant of medicine and food for alcoholism, has a long history of clinical experience and remarkable curative effect in the treatment of alcoholic liver disease (ALD). However, its effective forms and hepatoprotective mechanisms remain unknown. In the present study, a strategy based on UPLC-QTOF MS combined with mass defect filtering technique was established for comprehensive mapping of the metabolic profile of PF in rat plasma, urine, bile, and feces after oral administration. Furthermore, the absorbed constituents into plasma and bile with a relatively high level were subjected to the network analysis, functional enrichment analysis, and molecular docking to clarify the potential mechanism. Finally, the therapeutic effect of PF on ALD and predicted mechanisms were further evaluated using a rat model of alcohol-induced liver injury and Western blot analysis. In total, 25 prototype components and 82 metabolites, including 93 flavonoids, 13 saponins, and one phenolic acid, were identified or tentatively characterized in vivo. In addition, glucuronidation, sulfation, methylation, hydroxylation, and reduction were observed as the major metabolic pathways of PF. The constructed compound–target–pathway network revealed that 11 absorbed constituents associated with the 16 relevant targets could be responsible for the protective activity of PF against ALD by regulating nine pathways attributable to glycolysis/gluconeogenesis, amino acid metabolism, and lipid regulation as well as inflammation and immune regulation. In addition, four active ingredients (6″-O-xylosyltectoridin, genistein-7-glucuronide-4′-sulfate, tectoridin-4′-sulfate, and 6″-O-xylosyltectoridin-4′-sulfate) as well as two target genes (MAO-A and PPAR-α) were screened and validated to play a crucial role with a good molecular docking score. The present results not only increase the understanding on the effective form and molecular mechanisms of PF-mediated protection against ALD but also promote better application of PF as a supplement food and herbal medicine for the treatment of ALD.
Collapse
Affiliation(s)
- Jialin Qu
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qiuyue Chen
- Department of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, China
| | - Tianfu Wei
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ning Dou
- Department of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, China
| | - Dong Shang
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- *Correspondence: Dong Shang, ; Dan Yuan,
| | - Dan Yuan
- Department of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, China
- *Correspondence: Dong Shang, ; Dan Yuan,
| |
Collapse
|
8
|
Patel DK. Medicinal Importance, Pharmacological Activities and Analytical Aspects of an Isoflavone Glycoside Tectoridin. CURRENT NUTRITION & FOOD SCIENCE 2022. [DOI: 10.2174/1570193x19666220411133129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Polyphenols are a group of plant secondary metabolites that are produced in plants as a protective system against oxidative stress, UV radiation, pathogens and predator’s attack. Flavonoids are major class of plant phenolics found to be present in fruits, vegetables, tea and red wine. Tectoridin also called 40,5,7-thrihydroxy-6-methoxyisoflavone-7-Ob-D-glucopyranoside is an isoflavone glycoside found to be present in the flower of Porites lobata.
Methods:
Present work focused on the biological importance, therapeutic potential and pharmacological activities of tectoridin in medicine. Numerous scientific data has been collected from different literature databases such as Google Scholar, Science Direct, PubMed and Scopus in order to know the health beneficial potential of tectoridin. Pharmacological data have been analyzed in the present work to know the biological effectiveness of tectoridin against human disorders. Analytical data of tectoridin have been collected and analyzed in the present work in order to know the importance of modern analytical method in the isolation, separation and identification of tectoridin.
Results:
Scientific data analysis revealed the biological importance and therapeutic benefit of tectoridin in medicine, signifying the therapeutic potential of tectoridin in the healthcare systems. Biological activities of tectoridin are mainly due to its anti-inflammatory, anti-platelet, anti-angiogenic, hepatoprotective, anti-tumor, estrogenic, antioxidant and hypoglycemic activity. However effectiveness of tectoridin against rat lens aldose reductase, nitric oxide, skeletal and cardiac muscle sarcoplasmic reticulum and enzymes have been also presented in this work. Analytical data signified the importance of modern analytical techniques for the separation, identification and isolation of tectoridin.
Conclusion:
Present work signified the biological importance and therapeutic benefit of tectoridin in the medicine and other allied health sectors.
Collapse
Affiliation(s)
- Dinesh Kumar Patel
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, Uttar Pradesh, India
| |
Collapse
|
9
|
Liu J, Xia TR. Identification of the metabolites produced following Iris tectorum Maxim oral administration and a network pharmacology-based analysis of their potential pharmacological properties. Xenobiotica 2021; 51:680-688. [PMID: 33779496 DOI: 10.1080/00498254.2021.1907473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
1. Iris tectorum Maxim is a traditional herbal medicine that has been used to treat cancer, abdominal distension, hepatic cirrhosis, and inflammatory diseases. How I. tectorum Maxim is metabolised and the mechanistic basis for its pharmacological activity remain to be defined.2. This study was designed to clarify the metabolism of I. tectorum Maxim and to explore the mechanistic basis for its pharmacological activity.3. In the present study, 51 metabolites were identified via mass spectrometry in samples of bile, urine, and faeces from Wistar rats. Metabolites were mainly formed by glucuronidation, sulphation, methylation, and amino acid conjugation.4. Tectoridin, tectorigenin, irigenin, iristectorigenin A, iristectorigenin B, and 6-hydroxygenistein were identified as potentially be bioactive candidate metabolites for which 36 putative targets and 90 interactions were detected through a network pharmacology analysis. Gene set enrichment analyses and compound-disease networks revealed the targets of these metabolites to regulate important proteins associated with cancer as well as cardiovascular, urogenital, and digestive system diseases.5. Molecular docking confirmed the interactions of these six candidate bioactive metabolites with carbonic anhydrase IV, VII, and XII.6. Overall, these data offer new insights into the metabolism and pharmacological activity of I. tectorum Maxim in vivo.
Collapse
Affiliation(s)
- Jie Liu
- Department of Pharmacy, Yinan People's Hospital, Yinan, Shandong, China
| | - Tian-Rui Xia
- Guangdong Yi Fang Pharmaceutical Co., Ltd, Foshan, China
| |
Collapse
|
10
|
Wang Y, Qiao Y, Xu X, Ding X, Li W, Yuan B, Xu H. Simultaneous determination of major components of Huangqi-Honghua extract in rat plasma using LC-MS/MS and application to a pharmacokinetic study. Biomed Chromatogr 2019; 33:e4546. [PMID: 30937924 DOI: 10.1002/bmc.4546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/14/2019] [Accepted: 03/26/2019] [Indexed: 12/16/2022]
Abstract
A sensitive and reliable LC-MS/MS method was developed and validated for simultaneous quantification of the major components of Huangqi-Honghua extact in rat plasma, including hydroxysafflor yellow A (HSYA), astragaloside IV (ASIV), calycosin-7-O-β-d-glucoside (CAG), calycosin, calycosin-3'-O-glucuronide (C-3'-G) and calycosin-3'-O-sulfate (C-3'-S). After extraction by protein precipitation with acetonitrile and methanol from plasma, the analytes were separated on a Hypersil BDS C18 column by gradient elution with acetonitrile and 5 mM ammonium acetate. The detection was carried out on a triple quadrupole tandem mass spectrometer equipped with electrospray ionization source switched between negative and positive modes. HSYA was monitored in negative ionization mode from 0 to 4.9 min, and ASIV, CAG, calycosin, C-3'-G and C-3'-S were determined in positive ionization mode from 4.9 to 10 min. The lower limits of quantification of the analytes were 6.25 ng/mL for HSYA, 0.781 ng/mL for CAG and 1.56 ng/mL for ASIV and calycosin. The intra- and inter-assay precision (RSD) values were within 13.43%, and accuracy (RE) ranged from -8.75 to 9.92%. The validated method was then applied to the pharmacokinetic study of HSYA, ASIV, CAG, calycosin, C-3'-G and C-3'-S in rat after an oral administration of Huangqi-Honghua extract.
Collapse
Affiliation(s)
- Yimei Wang
- Department of Pharmaceutical Analysis, Pharmacy School, Shenyang Pharmaceutical University, Shenyang, China
| | - Yi Qiao
- Department of Pharmacy, Xijing Hospital, Medical University of the Air Force, Xi'an, China
| | - Xiaomin Xu
- Department of Pharmaceutical Analysis, Pharmacy School, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaohong Ding
- Drug Research and Development Center, Shandong Drug and Food Vocational College, Weihai, China
| | - Weiwei Li
- Department of Pharmaceutical Analysis, Pharmacy School, Shenyang Pharmaceutical University, Shenyang, China
| | - Bo Yuan
- Department of Pharmaceutical Analysis, Pharmacy School, Shenyang Pharmaceutical University, Shenyang, China
| | - Haiyan Xu
- Department of Pharmaceutical Analysis, Pharmacy School, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
11
|
Zhang R, Piao MJ, Oh MC, Park JE, Shilnikova K, Moon YJ, Kim DH, Jung U, Kim IG, Hyun JW. Protective Effect of an Isoflavone, Tectorigenin, Against Oxidative Stress-induced Cell Death via Catalase Activation. J Cancer Prev 2016; 21:257-263. [PMID: 28053960 PMCID: PMC5207610 DOI: 10.15430/jcp.2016.21.4.257] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/11/2016] [Accepted: 10/15/2016] [Indexed: 12/20/2022] Open
Abstract
Background Isoflavones are biologically active compounds that occur naturally in a variety of plants, with relatively high levels in soybean. Tectorigenin, an isoflavone, protects against hydrogen peroxide (H2O2)-induced cell damage. However, the underlying mechanism is unknown. Methods The MTT assay was performed to determine cell viability. Catalase activity was assessed by determining the amount of enzyme required to degrade 1 μM H2O2. Protein expression of catalase, phospho-extracellular signal-regulated kinase (ERK), IκB-α, and NF-κB were evaluated by Western blot analysis. A mobility shift assay was performed to assess the DNA-binding ability of NF-κB. Transient transfection and a NF-κB luciferase assay were performed to assess transcriptional activity. Results Tectorigenin reduced H2O2-induced death of Chinese hamster lung fibroblasts (V79-4). In addition, tectorigenin increased the activity and protein expression of catalase. Blockade of catalase activity attenuated the protective effect of tectorigenin against oxidative stress. Furthermore, tectorigenin enhanced phosphorylation of ERK and nuclear expression of NF-κB, while inhibition of ERK and NF-κB attenuated the protective effect of tectorigenin against oxidative stress. Conclusions Tectorigenin protects cells against oxidative damage by activating catalase and modulating the ERK and NF-κB signaling pathway.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Biochemistry, Jeju National University School of Medicine, Jeju, Korea; School of Medical Science and Laboratory Medicine, Jiangsu University, Jiangsu, China
| | - Mei Jing Piao
- Department of Biochemistry, Jeju National University School of Medicine, Jeju, Korea
| | - Min Chang Oh
- Department of Biochemistry, Jeju National University School of Medicine, Jeju, Korea
| | - Jeong Eon Park
- Department of Biochemistry, Jeju National University School of Medicine, Jeju, Korea
| | - Kristina Shilnikova
- Department of Biochemistry, Jeju National University School of Medicine, Jeju, Korea
| | - Yu Jin Moon
- Department of Biochemistry, Jeju National University School of Medicine, Jeju, Korea
| | - Dong Hyun Kim
- Department of Microbial Chemistry, College of Pharmacy, Kyung Hee University, Seoul, Korea
| | - Uhee Jung
- Radiation Biotechnology Research Division, Korea Atomic Energy Research Institute, Jeongeup, Korea
| | - In Gyu Kim
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Daejeon, Korea; Department of Radiation Biotechnology and Applied Radioisotope, Korea University of Science and Technology, Daejeon, Korea
| | - Jin Won Hyun
- Department of Biochemistry, Jeju National University School of Medicine, Jeju, Korea
| |
Collapse
|
12
|
Yang M, Yang X, An J, Xiao W, Wang Z, Huang W, Yang Z, Li F. Comparative pharmacokinetic profiles of tectorigenin in rat plasma by UPLC–MS/MS after oral administration of Iris tectorum Maxim extract and pure tectoridin. J Pharm Biomed Anal 2015; 114:34-41. [DOI: 10.1016/j.jpba.2015.05.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/03/2015] [Accepted: 05/06/2015] [Indexed: 11/27/2022]
|
13
|
Mehta P, Shah R, Lohidasan S, Mahadik KR. Pharmacokinetic profile of phytoconstituent(s) isolated from medicinal plants-A comprehensive review. J Tradit Complement Med 2015; 5:207-27. [PMID: 26587392 PMCID: PMC4624361 DOI: 10.1016/j.jtcme.2014.11.041] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 10/12/2014] [Accepted: 11/24/2014] [Indexed: 10/31/2022] Open
Abstract
Herbal medicine, the backbone of traditional medicine, has played an important role in human health and welfare for a long period. Traditional therapeutic approaches of regional significance are found in Africa, South and Central America, China, India, Tibet, Indonesia, and the Pacific Islands. The considerable scientific significance and commercial potential of traditional medicines have resulted in increased international attention and global market demands for herbal medicines, especially Chinese herbal medicines. Herbal medicines currently are the primary form of health care for the poor in the developing countries, and also are widely used as a supplement or substitute for conventional drugs in developed countries. These traditional medicines have a pivotal role in the treatment of various ailments and more than 50% of drugs used in Western pharmacopoeia are isolated from herbs or derived from modifications of chemicals found in plants. Herbal medicines usually contain a complex mixture of various bioactive molecules, which make its standardization complicated, and there is little information about all compounds responsible for pharmacological activity. Several research papers have been published that claim pharmacological activity of herbal medicines but few are discussing the role of the exact phytoconstituent. Understanding the pharmacokinetic profile of such phytoconstituents is essential. Although there are research papers that deal with pharmacokinetic properties of phytoconstituents, there are a number of phytoconstituents yet to be explored for their kinetic properties. This article reviews the pharmacokinetic profile of 50 different therapeutically effective traditional medicinal plants from the year 2003 onward.
Collapse
Affiliation(s)
- Piyush Mehta
- Department of Quality Assurance, Bharati Vidyapeeth University, Poona College of Pharmacy, Erandwane, Pune, Maharashtra, India
| | - Rishi Shah
- School of Life Sciences, University of Bradford, Bradford, West Yorkshire, UK
| | - Sathiyanarayanan Lohidasan
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth University, Poona College of Pharmacy, Erandwane, Maharashtra, India
| | - K R Mahadik
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth University, Poona College of Pharmacy, Erandwane, Maharashtra, India
| |
Collapse
|
14
|
Qu J, Wu Z, Gao J, Wen H, Wang T, Yuan D. Excretion of tectoridin metabolites in rat urine and bile orally administrated at different dosages and their inhibitory activity against aldose reductase. Fitoterapia 2014; 99:99-108. [DOI: 10.1016/j.fitote.2014.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/04/2014] [Accepted: 09/14/2014] [Indexed: 11/15/2022]
|
15
|
Excretion of tectorigenin in rat urine orally administrated at different dosages by ultra-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. Eur J Drug Metab Pharmacokinet 2014; 40:255-66. [DOI: 10.1007/s13318-014-0202-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 04/16/2014] [Indexed: 11/27/2022]
|
16
|
Takano A, Kamiya T, Tsubata M, Ikeguchi M, Takagaki K, Kinjo J. Oral Toxicological Studies ofPuerariaFlower Extract: Acute Toxicity Study in Mice and Subchronic Toxicity Study in Rats. J Food Sci 2013; 78:T1814-21. [DOI: 10.1111/1750-3841.12263] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 08/07/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Akira Takano
- Research and Development Div.; Toyoshinyaku Co. Ltd.; Saga Japan
| | - Tomoyasu Kamiya
- Research and Development Div.; Toyoshinyaku Co. Ltd.; Saga Japan
| | - Masahito Tsubata
- Research and Development Div.; Toyoshinyaku Co. Ltd.; Saga Japan
| | - Motoya Ikeguchi
- Research and Development Div.; Toyoshinyaku Co. Ltd.; Saga Japan
| | - Kinya Takagaki
- Research and Development Div.; Toyoshinyaku Co. Ltd.; Saga Japan
| | - Junei Kinjo
- Faculty of Pharmaceutical Sciences; Fukuoka Univ.; Fukuoka Japan
| |
Collapse
|
17
|
Wang S, Gong T, Lu J, Kano Y, Yuan D. Simultaneous determination of tectorigenin and its metabolites in rat plasma by ultra performance liquid chromatography/quadrupole time-of-flight mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 933:50-8. [DOI: 10.1016/j.jchromb.2013.06.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 06/02/2013] [Accepted: 06/07/2013] [Indexed: 11/30/2022]
|