1
|
Dadashi R, Farhadi K, Bahram M. Simple and fast self-polymerization of benzidine using anodic exfloated graphene oxide nanosheet. Sci Rep 2024; 14:27634. [PMID: 39528807 PMCID: PMC11554886 DOI: 10.1038/s41598-024-79078-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
Nowadays, researchers are looking for green synthesis methods of polymers that solve the disadvantages of polymerization with different initiators and traditional methods. In this work, the self-polymerization process of benzidine by anodic exfloated graphene oxide Nanosheet electrode (AEGO Nsh) is reported for the first time in the world. The self-polymerization of benzidine onto AEGO Nsh electrode was done by an easy and simple method by anodizing the graphite sheet followed by immersing the AEGO Nsh electrode inside the benzidine monomer dissolved in organic and inorganic acid media. The surface morphology of the self-polymerized benzidine (SPB) onto the AEGO Nsh (SPB/AEGO Nsh) electrode was investigated by phone camera and scanning electron microscope (FE-SEM) imaging. The chemical characterization of the SPB/AEGO Nsh electrode was verified through XPS and ATR-IR analysis. Additionally, the self-polymerization of benzidine onto AEGO Nsh electrodes was confirmed by electrochemical tests using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques. The results from these investigations unequivocally confirm the self-polymerization of benzidine onto the AEGO Nsh electrode.
Collapse
Affiliation(s)
- Reza Dadashi
- Department of Analytical Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
| | - Khalil Farhadi
- Department of Analytical Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran.
- Institute of Nanotechnology, Urmia University, Urmia, Iran.
| | - Morteza Bahram
- Department of Analytical Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
| |
Collapse
|
2
|
Afsharipour R, Dadfarnia S, Shabani AMH, Kazemi E. Design of a pseudo stir bar sorptive extraction using graphenized pencil lead as the base of the molecularly imprinted polymer for extraction of nabumetone. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 238:118427. [PMID: 32388234 DOI: 10.1016/j.saa.2020.118427] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/17/2020] [Accepted: 04/26/2020] [Indexed: 06/11/2023]
Abstract
Molecularly imprinted polymer (MIP) was synthesized through the coprecipitation method on the graphene oxide anchored pencil lead as a substrate for the first time and applied as an efficient sorbent for pseudo stir bar sorptive extraction of nabumetone. The extracted analyte was determined by a novel spectrophotometric method based on the aggregation of silicate sol-gel stabilized silver nanoparticles in the presence of the analyte. The synthesized polymer was characterized using Fourier transform infrared spectroscopy and field emission scanning electron microscopy. Optimization of important parameters affecting the extraction efficiency was done using central composite design whereas the spectrophotometric method was optimized via one at a time variable. Under the optimal conditions, the calibration curve exhibited linearity in the concentration range of 1.5-20.0 μg L-1. A limit of detection of 0.20 μg L-1, an enhancement factor of 393 and relative standard deviations (at 10 μg L-1, n = 6) of 4.6% and 8.1% for intra- and inter-day analysis were obtained. The developed procedure was successfully utilized for the quantification of traces of nabumetone in tap water and biological samples with the complex matrix including human urine and serum.
Collapse
Affiliation(s)
- Roya Afsharipour
- Department of Chemistry, Faculty of Science, Yazd University, Yazd, Iran
| | | | | | - Elahe Kazemi
- Environmental and Bio-Analytical Laboratories, Department of Chemistry, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
3
|
Chunin N, Phooplub K, Kaewpet M, Wattanasin P, Kanatharana P, Thavarungkul P, Thammakhet-Buranachai C. A novel 3D-printed solid phase microextraction device equipped with silver-polyaniline coated pencil lead for the extraction of phthalate esters in cosmeceutical products. Anal Chim Acta 2019; 1091:30-39. [DOI: 10.1016/j.aca.2019.09.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/30/2019] [Accepted: 09/12/2019] [Indexed: 12/18/2022]
|
4
|
ALOthman ZA, Wabaidur SM. Application of carbon nanotubes in extraction and chromatographic analysis: A review. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2018.05.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
5
|
Sajini T, Thomas R, Mathew B. Computational Design and Fabrication of Enantioselective Recognition Sorbents for L-phenylalanine Benzyl Ester on Multiwalled Carbon Nanotubes Using Molecular Imprinting Technology. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-019-2282-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
6
|
Sajini T, Thomas R, Mathew B. Rational design and synthesis of photo-responsive molecularly imprinted polymers for the enantioselective intake and release of l-phenylalanine benzyl ester on multiwalled carbon nanotubes. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.04.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Lashgari M, Yamini Y. An overview of the most common lab-made coating materials in solid phase microextraction. Talanta 2019; 191:283-306. [DOI: 10.1016/j.talanta.2018.08.077] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 11/28/2022]
|
8
|
Sanjuán AM, Reglero Ruiz JA, García FC, García JM. Recent developments in sensing devices based on polymeric systems. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.10.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Affiliation(s)
- Joseph J. BelBruno
- Dartmouth College, Department of Chemistry, Hanover, New Hampshire 03755, United States
| |
Collapse
|
10
|
|
11
|
Gao B, Li Y, Cui K. Molecularly imprinted membrane with innovative structure and high performance for chiral separation of amino acids. INT J POLYM MATER PO 2017. [DOI: 10.1080/00914037.2017.1354198] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Baojiao Gao
- Department of Chemical Engineering, North University of China, Taiyuan, People’s Republic of China
| | - Yanbin Li
- Department of Chemical Engineering, North University of China, Taiyuan, People’s Republic of China
| | - Kunli Cui
- Department of Chemical Engineering, North University of China, Taiyuan, People’s Republic of China
| |
Collapse
|
12
|
David IG, Popa DE, Buleandra M. Pencil Graphite Electrodes: A Versatile Tool in Electroanalysis. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2017; 2017:1905968. [PMID: 28255500 PMCID: PMC5307002 DOI: 10.1155/2017/1905968] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/19/2016] [Accepted: 01/04/2017] [Indexed: 05/05/2023]
Abstract
Due to their electrochemical and economical characteristics, pencil graphite electrodes (PGEs) gained in recent years a large applicability to the analysis of various types of inorganic and organic compounds from very different matrices. The electrode material of this type of working electrodes is constituted by the well-known and easy commercially available graphite pencil leads. Thus, PGEs are cheap and user-friendly and can be employed as disposable electrodes avoiding the time-consuming step of solid electrodes surface cleaning between measurements. When compared to other working electrodes PGEs present lower background currents, higher sensitivity, good reproducibility, and an adjustable electroactive surface area, permitting the analysis of low concentrations and small sample volumes without any deposition/preconcentration step. Therefore, this paper presents a detailed overview of the PGEs characteristics, designs and applications of bare, and electrochemically pretreated and chemically modified PGEs along with the corresponding performance characteristics like linear range and detection limit. Techniques used for bare or modified PGEs surface characterization are also reviewed.
Collapse
Affiliation(s)
- Iulia Gabriela David
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bucharest, Panduri Av. 90–92, District 5, 050663 Bucharest, Romania
| | - Dana-Elena Popa
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bucharest, Panduri Av. 90–92, District 5, 050663 Bucharest, Romania
| | - Mihaela Buleandra
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bucharest, Panduri Av. 90–92, District 5, 050663 Bucharest, Romania
| |
Collapse
|
13
|
Ayazi Z. Application of nanocomposite-based sorbents in microextraction techniques: a review. Analyst 2017; 142:721-739. [DOI: 10.1039/c6an02744j] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review provides a general overview of the recent trends for the preparation of nanocomposites and their applications in microextraction techniques.
Collapse
Affiliation(s)
- Zahra Ayazi
- Department of Chemistry
- Faculty of Sciences
- Azarbaijan Shahid Madani University
- Tabriz
- Iran
| |
Collapse
|
14
|
Ionic liquid crosslinkers for chiral imprinted nanoGUMBOS. J Colloid Interface Sci 2016; 463:29-36. [DOI: 10.1016/j.jcis.2015.10.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/09/2015] [Accepted: 10/13/2015] [Indexed: 11/24/2022]
|
15
|
Sarafraz-Yazdi A, Razavi N. Application of molecularly-imprinted polymers in solid-phase microextraction techniques. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2015.05.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
16
|
Tiwari MP, Prasad A. Molecularly imprinted polymer based enantioselective sensing devices: A review. Anal Chim Acta 2015; 853:1-18. [DOI: 10.1016/j.aca.2014.06.011] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 06/08/2014] [Accepted: 06/09/2014] [Indexed: 11/28/2022]
|
17
|
Dai H, Xiao D, He H, Li H, Yuan D, Zhang C. Synthesis and analytical applications of molecularly imprinted polymers on the surface of carbon nanotubes: a review. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1376-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
18
|
Recent applications of carbon nanotube sorbents in analytical chemistry. J Chromatogr A 2014; 1357:110-46. [DOI: 10.1016/j.chroma.2014.05.035] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 05/12/2014] [Accepted: 05/13/2014] [Indexed: 01/10/2023]
|
19
|
Liang X, Liu S, Wang S, Guo Y, Jiang S. Carbon-based sorbents: Carbon nanotubes. J Chromatogr A 2014; 1357:53-67. [DOI: 10.1016/j.chroma.2014.04.039] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/11/2014] [Accepted: 04/11/2014] [Indexed: 10/25/2022]
|