1
|
Wang Z, Ren Q, Lu Z, Lai M, Xue X, Ouyang H, Yang S, Feng Y. Study on the chemical composition of Gegen-Tianma decoction and its absorbed constituents in rat plasma, brain based on UPLC-Q-TOF-MS and DESI-MSI. J Pharm Biomed Anal 2024; 251:116446. [PMID: 39197207 DOI: 10.1016/j.jpba.2024.116446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024]
Abstract
In traditional Chinese medicinal practices, Gegen (GG) and Tianma (TM) are widely utilized for headache relief, but their material basis has not been comprehensively characterized. This research utilized ultra performance liquid chromatography-quadrupole-time of flight-mass spectrometry (UPLC-Q-TOF-MS) for precise determination of Gegen-Tianma's (GGTM) material composition, and employed desorption electrospray ionization-mass spectrometry imaging (DESI-MSI) to pinpoint the brain-absorbed components and various metabolites post oral administration to rats. A total of 80 chemical constituents were identified from GGTM, 11 prototypes and 18 metabolites were identified from plasma. The brain tissue was identified in total 4 prototypes and 5 metabolites, these constituents were basically located in the prefrontal cortex and thalamus. The absorption patterns of components in the rat brain aligned with the varied distribution of metabolites within the brain. This study provides a solid theoretical basis for in-depth exploration of potential drug targets and elucidation of the specific mechanism of action of GGTM in the treatment of migraine.
Collapse
Affiliation(s)
- Zhujun Wang
- Jiangxi University of Chinese Medicine, No.818 Yunwan Road, Nanchang 330002, PR China
| | - Qi Ren
- Jiangxi University of Chinese Medicine, No.818 Yunwan Road, Nanchang 330002, PR China
| | - Zhijian Lu
- Jiangxi University of Chinese Medicine, No.818 Yunwan Road, Nanchang 330002, PR China
| | - Miao Lai
- Jiangxi University of Chinese Medicine, No.818 Yunwan Road, Nanchang 330002, PR China
| | - Xiao Xue
- Jiangxi University of Chinese Medicine, No.818 Yunwan Road, Nanchang 330002, PR China.
| | - Hui Ouyang
- Jiangxi University of Chinese Medicine, No.818 Yunwan Road, Nanchang 330002, PR China; National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Nanchang 330004, PR China.
| | - Shiling Yang
- Jiangxi University of Chinese Medicine, No.818 Yunwan Road, Nanchang 330002, PR China
| | - Yuling Feng
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Nanchang 330004, PR China.
| |
Collapse
|
2
|
Chen H, Miao Y, Duan H, Yi S, Lin Z, Guo Y, Zou J, Niu L. The effect of combined ultrasound stimulation and gastrodin on seizures in mice. Front Neurosci 2024; 18:1499078. [PMID: 39649662 PMCID: PMC11621076 DOI: 10.3389/fnins.2024.1499078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/12/2024] [Indexed: 12/11/2024] Open
Abstract
Both physiotherapy and medicine play essential roles in the treatment of epilepsy. The purpose of this research was to evaluate the efficacy of the combined therapy with focus ultrasound stimulation (FUS) and gastrodin (GTD) on seizures in a mouse model. Kainic acid-induced seizure mice were divided into five groups randomly: sham, FUS, saline + sham, GTD + sham and GTD + FUS. The results showed that combined therapy with ultrasound stimulation and gastrodin can significantly reduce the number and duration of seizures in GTD + FUS group. 9.4T magnetic resonance imaging and histologic staining results revealed the underlying mechanism of the combined therapy may be that ultrasound stimulation increases cell membrane permeability to increase GTD concentration in brain. In addition, we verified the safety of FUS combined with GTD therapy. This research provides a new strategy for neurological disorders combining treatment of physical neuromodulation and medicine.
Collapse
Affiliation(s)
- Houminji Chen
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yuqing Miao
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Haowen Duan
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Shasha Yi
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhengrong Lin
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yanwu Guo
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Junjie Zou
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Lili Niu
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
3
|
Long Y, Hu J, Liu Y, Wu D, Zheng Z, Gui S, He N. Development of puerarin-loaded poly(lactic acid) microspheres for sustained ocular delivery: In vitro/vivo evaluation. Eur J Pharm Biopharm 2024; 204:114524. [PMID: 39370056 DOI: 10.1016/j.ejpb.2024.114524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/07/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Diabetic retinopathy, an ocular complication of diabetes, is an important cause of blindness in adults. Puerarin is considered to have promising potential for clinical use in treating diabetic retinopathy. In this study, we designed a novel puerarin-loaded poly(lactic acid) sustained-release microspheres suitable for ocular administration, and we assessed itsin vitro and in vivo properties. The preparation of puerarin-loaded microspheres was optimized by Box-Behnken response surface design. The encapsulation efficiency and drug loading of microspheres were 35.71% and 3.85%, respectively. The microspheres exhibited good dispersion and high safety, making it suitable for ocular drug delivery. In vitro release demonstrated that microspheres had a well-sustained release effectiveness, and its release behavior complied with the zero-order kinetic characteristics. The results of ocular tissue distribution revealed that the CmaxandAUC0-∞ of the microspheres group in the retina and choroid were considerably higher than those of the solution group and the intravenous injection group. This research revealed that intravitreal injection of microspheres can significantly prolong the half-life of puerarin in eye tissues and achieve sustained drug release. Therefore, intravitreal injection of microspheres has positive implications for the treatment of diabetic retinopathy.
Collapse
Affiliation(s)
- Yanqiu Long
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jie Hu
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yan Liu
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Danqing Wu
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Zhiyun Zheng
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medical Sciences, Hefei 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, 230012, China
| | - Shuangying Gui
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medical Sciences, Hefei 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, 230012, China
| | - Ning He
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medical Sciences, Hefei 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, 230012, China.
| |
Collapse
|
4
|
Wan Q, Lu Q, Luo S, Guan C, Zhang H. The beneficial health effects of puerarin in the treatment of cardiovascular diseases: from mechanisms to therapeutics. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7273-7296. [PMID: 38709267 DOI: 10.1007/s00210-024-03142-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading causes of death globally that seriously threaten human health. Although novel western medicines have continued to be discovered over the past few decades to inhibit the progression of CVDs, new drug research and development for treating CVDs with less side effects and adverse reactions are continuously being desired. Puerarin is a natural product found in a variety of medicinal plants belonging to the flavonoid family with potent biological and pharmacological activities. Abundant research findings in the literature have suggested that puerarin possesses a promising prospect in treating CVDs. In recent years, numerous new molecular mechanisms of puerarin have been explored in experimental and clinical studies, providing new evidence for this plant metabolite to protect against CVDs. This article systematically introduces the history of use, bioavailability, and various dosage forms of puerarin and further summarizes recently published data on the major research advances and their underlying therapeutic mechanisms in treating CVDs. It may provide references for researchers in the fields of pharmacology, natural products, and internal medicine.
Collapse
Affiliation(s)
- Qiang Wan
- Affiliated Hospital of Jiangxi University of Chinese Medicine, 445 Bayi Avenue, Nanchang, 330006, China.
- Clinical Medical College, Jiangxi University of Chinese Medicine, 445 Bayi Avenue, Nanchang, 330006, China.
| | - Qiwen Lu
- Graduate School, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang, 330004, China
| | - Sang Luo
- Graduate School, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang, 330004, China
| | - Chengyan Guan
- Graduate School, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang, 330004, China
| | - Hao Zhang
- Graduate School, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang, 330004, China
| |
Collapse
|
5
|
Dai Y, Ban W, Yang Z. Gastrodin, a Promising Natural Small Molecule for the Treatment of Central Nervous System Disorders, and Its Recent Progress in Synthesis, Pharmacology and Pharmacokinetics. Int J Mol Sci 2024; 25:9540. [PMID: 39273485 PMCID: PMC11394983 DOI: 10.3390/ijms25179540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/08/2024] [Accepted: 04/13/2024] [Indexed: 09/15/2024] Open
Abstract
Gastrodia elata Blume is a traditional medicinal and food homology substance that has been used for thousands of years, is mainly distributed in China and other Asian countries, and has always been distinguished as a superior class of herbs. Gastrodin is the main active ingredient of G. elata Blume and has attracted increasing attention because of its extensive pharmacological activities. In addition to extraction and isolation from the original plant, gastrodin can also be obtained via chemical synthesis and biosynthesis. Gastrodin has significant pharmacological effects on the central nervous system, such as sedation and improvement of sleep. It can also improve epilepsy, neurodegenerative diseases, emotional disorders and cognitive impairment to a certain extent. Gastrodin is rapidly absorbed and widely distributed in the body and can also penetrate the blood-brain barrier. In brief, gastrodin is a promising natural small molecule with significant potential in the treatment of brain diseases. In this review, we summarised studies on the synthesis, pharmacological effects and pharmacokinetic characteristics of gastrodin, with emphasis on its effects on central nervous system disorders and the possible mechanisms, in order to find potential therapeutic applications and provide favourable information for the research and development of gastodin.
Collapse
Affiliation(s)
- Yanan Dai
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Weikang Ban
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Zhihong Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
6
|
Hu J, Li P, Zhao H, Ji P, Yang Y, Ma J, Zhao X. Alterations of gut microbiota and its correlation with the liver metabolome in the process of ameliorating Parkinson's disease with Buyang Huanwu decoction. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116893. [PMID: 37423520 DOI: 10.1016/j.jep.2023.116893] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Buyang Huanwu decoction (BHD), a famous traditional Chinese medicine (TCM) formula, was first recorded in Qing Dynasty physician Qingren Wang's Yi Lin Gai Cuo. BHD has been widely utilized in the treatment of patients with neurological disorders, including Parkinson's disease (PD). However, the underlying mechanism has not been fully elucidated. In particular, little is known about the role of gut microbiota. AIM OF THE STUDY We aimed to reveal the alterations and functions of gut microbiota and its correlation with the liver metabolome in the process of improving PD with BHD. MATERIALS AND METHODS The cecal contents were collected from PD mice treated with or without BHD. 16S rRNA gene sequencing was performed on an Illumina MiSeq-PE250 platform, and the ecological structure, dominant taxa, co-occurrence patterns, and function prediction of the gut microbial community were analyzed by multivariate statistical methods. The correlation between differential microbial communities in the gut and differentially accumulated metabolites in the liver was analyzed using Spearman's correlation analysis. RESULTS The abundance of Butyricimonas, Christensenellaceae, Coprococcus, Peptococcaceae, Odoribacteraceae, and Roseburia was altered significantly in the model group, which was by BHD. Ten genera, namely Dorea, unclassified_Lachnospiraceae, Oscillospira, unidentified_Ruminococcaceae, unclassified_Clostridiales, unidentified_Clostridiales, Bacteroides, unclassified_Prevotellaceae, unidentified_Rikenellaceae, and unidentified_S24-7, were identified as key bacterial communities. According to the function prediction of differential genera, the mRNA surveillance pathway might be a target of BHD. Integrated analysis of gut microbiota and the liver metabolome revealed that several gut microbiota genera such as Parabacteroides, Ochrobactrum, Acinetobacter, Clostridium, and Halomonas, were positively or negatively correlated with some nervous system-related metabolites, such as L-carnitine, L-pyroglutamic acid, oleic acid, and taurine. CONCLUSIONS Gut microbiota might be a target of BHD in the process of ameliorating PD. Our findings provide novel insight into the mechanisms underlying the effects of BHD on PD and contribute to the development of TCM.
Collapse
Affiliation(s)
- Jianran Hu
- Department of Biological Science and Technology, Jinzhong University, Jinzhong, 030619, China
| | - Ping Li
- Department of Biological Science and Technology, Jinzhong University, Jinzhong, 030619, China.
| | - Hongmei Zhao
- Department of Biological Science and Technology, Jinzhong University, Jinzhong, 030619, China
| | - Pengyu Ji
- Department of Biological Science and Technology, Jinzhong University, Jinzhong, 030619, China
| | - Yanjun Yang
- Department of Biological Science and Technology, Jinzhong University, Jinzhong, 030619, China
| | - Jianhua Ma
- Department of Biological Science and Technology, Jinzhong University, Jinzhong, 030619, China
| | - Xin Zhao
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, 030001, China
| |
Collapse
|
7
|
Wang J, Cao L, Gao X, Gao H, Chen X, Wang Z, Xiao W. Discovery of the material basis of Jiuwei Xifeng granules using pharmaco-chemistry and pharmacokinetics. JOURNAL OF ETHNOPHARMACOLOGY 2023; 313:116504. [PMID: 37084988 DOI: 10.1016/j.jep.2023.116504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/11/2023] [Accepted: 04/16/2023] [Indexed: 05/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jiuwei Xifeng granules (JWXF) is primarily used for the treatment of Tourette syndrome (TS) with kidney-Yin deficiency and internal stirring of liver wind. However, few studies have focused on this issue. AIM OF THE STUDY This study aimed to clarify chemical composition of JWXF using in vitro and in vivo pharmaco-chemistry and to provide a basis for the clinical use of JWXF using a strategy of pharmacokinetics. MATERIALS AND METHODS In this study, the chemical constituents and in vivo metabolism of JWXF were evaluated using high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF-MS/MS), and the time-dependent processes of the three main components in rats were detected using ultra-high performance liquid chromatography-triple quadrupole mass spectrometry (UPLC-QQQ-MS/MS). RESULTS A total of 75 constituents were identified, including 22 alkaloids, 21 terpenes, 15 organic acids and their derivatives, and 17 other compounds. After administration, 12 compounds were identified in rat plasma, including 11 prototypes and one metabolite. Pharmacokinetic analysis showed that the effects of gentiopicroside, gastrodin, and sweroside in rats were dose-dependent when the dose of JWXF was 1-4 g/kg. They were rapidly absorbed and did not accumulate in the plasma after 7-day continuous intragastric administration. CONCLUSIONS JWXF consists of 75 components, including alkaloids, terpenes, and organic acids. The three main compounds, gastrodin, gentiopicroside, and sweroside, undergo rapid absorption, elimination, and dose-dependent pharmacokinetics.
Collapse
Affiliation(s)
- Jiajia Wang
- Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, China; Nanjing University of Chinese Medicine, Nanjing, 21002, China; National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing, 211100, China
| | - Liang Cao
- Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, China; Nanjing University of Chinese Medicine, Nanjing, 21002, China; National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing, 211100, China; The Key Laboratory for the New Technique Research of TCM Extraction and Purification, Jiangsu Lianyungang, 222047, China
| | - Xia Gao
- Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, China; Nanjing University of Chinese Medicine, Nanjing, 21002, China; National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing, 211100, China
| | - Huifang Gao
- Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, China; Nanjing University of Chinese Medicine, Nanjing, 21002, China; National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing, 211100, China
| | - Xialin Chen
- Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, China; Nanjing University of Chinese Medicine, Nanjing, 21002, China; National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing, 211100, China.
| | - Zhenzhong Wang
- Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, China; Nanjing University of Chinese Medicine, Nanjing, 21002, China; National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing, 211100, China; The Key Laboratory for the New Technique Research of TCM Extraction and Purification, Jiangsu Lianyungang, 222047, China
| | - Wei Xiao
- Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, China; Nanjing University of Chinese Medicine, Nanjing, 21002, China; National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing, 211100, China; The Key Laboratory for the New Technique Research of TCM Extraction and Purification, Jiangsu Lianyungang, 222047, China.
| |
Collapse
|
8
|
Liu T, Su K, Cai W, Ao H, Li M. Therapeutic potential of puerarin against cerebral diseases: From bench to bedside. Eur J Pharmacol 2023:175695. [PMID: 36977450 DOI: 10.1016/j.ejphar.2023.175695] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 03/28/2023]
Abstract
The incidence of cerebral diseases is rapidly increasing worldwide, and they have become an important challenge for modern medicine. Most of the available chemical drugs used in the treatment of cerebral diseases are highly toxic and single-targeted. Therefore, novel drugs from natural resources have attracted much attention for their potential to manage cerebral diseases. Puerarin is a natural isoflavone isolated from the roots of Pueraria species such as P. lobata (Willd) Ohwi, P. thomsonii, and P. mirifica. Several authors have reported the beneficial effects of puerarin in cerebral ischemic disease, intracerebral hemorrhage, vascular dementia, Alzheimer's disease, Parkinson's disease, depression, anxiety, and traumatic brain injury. This review summarizes the brain pharmacokinetics, brain drug delivery system, clinical use (in cerebral diseases), toxicity, and the adverse clinical reactions of puerarin. We have systematically presented the pharmacological actions and the molecular mechanisms of puerarin in various cerebral diseases to provide a direction for future research on the therapeutic use of puerarin in cerebral diseases.
Collapse
|
9
|
Li Y, Li F. Mechanism and Prospect of Gastrodin in Osteoporosis, Bone Regeneration, and Osseointegration. Pharmaceuticals (Basel) 2022; 15:1432. [PMID: 36422561 PMCID: PMC9698149 DOI: 10.3390/ph15111432] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/08/2022] [Accepted: 11/16/2022] [Indexed: 11/14/2023] Open
Abstract
Gastrodin, a traditional Chinese medicine ingredient, is widely used to treat vascular and neurological diseases. However, recently, an increasing number of studies have shown that gastrodin has anti-osteoporosis effects, and its mechanisms of action include its antioxidant effect, anti-inflammatory effect, and anti-apoptotic effect. In addition, gastrodin has many unique advantages in promoting bone healing in tissue engineering, such as inducing high hydrophilicity in the material surface, its anti-inflammatory effect, and pro-vascular regeneration. Therefore, this paper summarized the effects and mechanisms of gastrodin on osteoporosis and bone regeneration in the current research. Here we propose an assumption that the use of gastrodin in the surface loading of oral implants may greatly promote the osseointegration of implants and increase the success rate of implants. In addition, we speculated on the potential mechanisms of gastrodin against osteoporosis, by affecting actin filament polymerization, renin-angiotensin system (RAS) and ferroptosis, and proposed that the potential combination of gastrodin with Mg2+, angiotensin type 2 receptor blockers or artemisinin may greatly inhibit osteoporosis. The purpose of this review is to provide a reference for more in-depth research and application of gastrodin in the treatment of osteoporosis and implant osseointegration in the future.
Collapse
Affiliation(s)
| | - Fenglan Li
- Department of Prosthodontics, Shanxi Provincial People’s Hospital, Shanxi Medical University, Taiyuan 030000, China
| |
Collapse
|
10
|
Jiang L, Xiong Y, Tu Y, Zhang W, Zhang Q, Nie P, Yan X, Liu H, Liu R, Xu G. Elucidation of the Transport Mechanism of Puerarin and Gastrodin and Their Interaction on the Absorption in a Caco-2 Cell Monolayer Model. Molecules 2022; 27:molecules27041230. [PMID: 35209020 PMCID: PMC8875129 DOI: 10.3390/molecules27041230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 02/04/2023] Open
Abstract
Puerarin (PUR) and gastrodin (GAS) are often used in combined way for treating diseases caused by microcirculation disorders. The current study aimed to investigate the absorption and transportation mechanism of PUR and GAS and their interaction via Caco-2 monolayer cell model. In this work, the concentration in Caco-2 cell of PUR and GAS was determined by HPLC method. The bidirectional transport of PUR and GAS and the inhibition of drug efflux including verapamil and cyclosporine on the transport of these two components were studied. The mutual influence between PUR and GAS, especially the effect of the latter on the former of the bidirectional transport were also investigated. The transport of 50 μg·mL−1 PUR in Caco-2 cells has no obvious directionality. While the transport of 100 and 200 μg·mL−1 PUR presents a strong directionality, and this directionality can be inhibited by verapamil and cyclosporine. When PUR and GAS were used in combination, GAS could increase the absorption of PUR while PUR had no obvious influence on GAS. Therefore, the compatibility of PUR and GAS is reasonable, and GAS can promote the transmembrane transport of PUR, the effect of which is similar to that of verapamil.
Collapse
Affiliation(s)
- Li Jiang
- Center for Differentiation and Development of TCM Basic Theory, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (L.J.); (Y.T.); (W.Z.); (Q.Z.); (P.N.); (X.Y.); (H.L.)
- Jiangxi Provincial Key Laboratory of TCM Etiopathogenesis, Jiangxi University of Chinese Medicine, Nanchang 330004, China
- Key Laboratory of Pharmacology of Traditional Chinese Medicine in Jiangxi, Nanchang 330004, China
| | - Yanling Xiong
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China;
| | - Yu Tu
- Center for Differentiation and Development of TCM Basic Theory, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (L.J.); (Y.T.); (W.Z.); (Q.Z.); (P.N.); (X.Y.); (H.L.)
| | - Wentong Zhang
- Center for Differentiation and Development of TCM Basic Theory, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (L.J.); (Y.T.); (W.Z.); (Q.Z.); (P.N.); (X.Y.); (H.L.)
| | - Qiyun Zhang
- Center for Differentiation and Development of TCM Basic Theory, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (L.J.); (Y.T.); (W.Z.); (Q.Z.); (P.N.); (X.Y.); (H.L.)
- Jiangxi Provincial Key Laboratory of TCM Etiopathogenesis, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Peng Nie
- Center for Differentiation and Development of TCM Basic Theory, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (L.J.); (Y.T.); (W.Z.); (Q.Z.); (P.N.); (X.Y.); (H.L.)
- Jiangxi Provincial Key Laboratory of TCM Etiopathogenesis, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xiaojun Yan
- Center for Differentiation and Development of TCM Basic Theory, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (L.J.); (Y.T.); (W.Z.); (Q.Z.); (P.N.); (X.Y.); (H.L.)
- Jiangxi Provincial Key Laboratory of TCM Etiopathogenesis, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Hongning Liu
- Center for Differentiation and Development of TCM Basic Theory, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (L.J.); (Y.T.); (W.Z.); (Q.Z.); (P.N.); (X.Y.); (H.L.)
- Jiangxi Provincial Key Laboratory of TCM Etiopathogenesis, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Ronghua Liu
- Department of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China;
| | - Guoliang Xu
- Center for Differentiation and Development of TCM Basic Theory, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (L.J.); (Y.T.); (W.Z.); (Q.Z.); (P.N.); (X.Y.); (H.L.)
- Jiangxi Provincial Key Laboratory of TCM Etiopathogenesis, Jiangxi University of Chinese Medicine, Nanchang 330004, China
- Key Laboratory of Pharmacology of Traditional Chinese Medicine in Jiangxi, Nanchang 330004, China
- Correspondence:
| |
Collapse
|
11
|
Rashid MA, Muneer S, Wang T, Alhamhoom Y, Rintoul L, Izake EL, Islam N. Puerarin dry powder inhaler formulations for pulmonary delivery: Development and characterization. PLoS One 2021; 16:e0249683. [PMID: 33848310 PMCID: PMC8043385 DOI: 10.1371/journal.pone.0249683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/22/2021] [Indexed: 11/19/2022] Open
Abstract
This study aims at developing and characterizing the puerarin dry powder inhaler (DPI) formulations for pulmonary delivery. The inhalable particles size (<2 μm) was accomplished by micronization and its morphology was examined by scanning electron microscopy (SEM). The puerarin-excipient interaction in powder mixtures was analyzed by using Fourier transform infrared spectroscopy (FTIR), Raman confocal microscopy, X-Ray powder Diffraction (XRD), and differential scanning calorimetry (DSC) methods. Using a Twin stage impinger (TSI), the in-vitro aerosolization of the powder formulations was carried out at a flow rate of 60 L/min and the drug was quantified by employing a validated HPLC method. No significant interactions between the drug and the excipients were observed in the powder formulations. The fine particle fraction (FPF) of the drug alone was 4.2% which has increased five to six-fold for the formulations with aerosolization enhancers. Formulation containing lactose as large carriers produced 32.7% FPF, which further increased with the addition of dispersibility enhancers, leucine and magnesium stearate (40.8% and 41.2%, respectively). The Raman and FTIR techniques are very useful tool for understanding structural integrity and stability of the puerarin in the powder formulations. The puerarin was found to be compatible with the excipients used and the developed DPI formulation may be considered as an efficient formulation for pulmonary delivery for the management of various diseases at a very low dose.
Collapse
Affiliation(s)
- Md Abdur Rashid
- Department of Pharmaceutics, School of Pharmacy, King Khalid University, Guraiger, Abha, Kingdom of Saudi Arabia
- * E-mail: (NI); (MAR)
| | - Saiqa Muneer
- School of Chemistry and Physics, Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, Faculty of Science, University of Queensland, Brisbane, Australia
| | - Tony Wang
- Central Analytical Research Facility, Institution for Future Environment, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Yahya Alhamhoom
- Department of Pharmaceutics, School of Pharmacy, King Khalid University, Guraiger, Abha, Kingdom of Saudi Arabia
| | - Llew Rintoul
- Central Analytical Research Facility, Institution for Future Environment, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Emad L. Izake
- School of Chemistry and Physics, Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Nazrul Islam
- Queensland University of Technology, Pharmacy Discipline, School of Clinical Sciences, Faculty of Health, Brisbane, Queensland, Australia
- Tier 2 Research Centre, Centre for Immunology and Infection, Queensland University of Technology, Brisbane, Queensland, Australia
- * E-mail: (NI); (MAR)
| |
Collapse
|
12
|
Yip KL, Zhou X, Chook P, Leung PC, Schachter S, Mok VCT, Leung TWH, Koon CM, Leung H. Herb-drug interaction of gastrodiae rhizoma on carbamazepine: A pharmacokinetic study in rats. Epilepsy Res 2020; 165:106376. [PMID: 32526641 DOI: 10.1016/j.eplepsyres.2020.106376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/14/2020] [Accepted: 05/28/2020] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Gastrodiae Rhizoma (GR), is a traditional Chinese Medicine that has been used for neurological disorders, including epilepsy. Epilepsy patients may be treated with adjunctive therapy of GR with antiepileptic drugs (AEDs). In particular, carbamazepine (CBZ) is of high potential to interact with concurrent treatment of Chinese Medicine. This study was to investigate the herb-drug interactions of GR and CBZ, an AED, through pharmacokinetic approach in rats. METHODS We adopted a high-performance liquid chromatography (HPLC) system to quantify the plasma level of CBZ and its metabolite (carbamazepine-10, 11-epoxide, CBZE). The method was validated as per instructions under United States Food and Drug Administration (USFDA) guidance. For the herb-drug interaction study, rats were randomly divided into four different treatment groups: single-dose CBZ treatment, single-dose CBZ/GR treatment, 2-week course of CBZ treatment and 2-week course of CBZ/GR treatment. RESULTS Our results demonstrated the auto-induction of CBZ metabolization when comparing single-dose with 2-week course of CBZ treatment. Pharmacokinetic interactions were noted in concomitant use of GR with CBZ by comparing two single-dose treatments (CBZ versus CBZ/GR). Our data showed that GR increased the mean residence time (MRT0-t) and the time taken to reach the maximum concentration (Tmax) of CBZ in single-dose of CBZ/GR treatment. The maximum drug concentration (Cmax) of CBZ was reduced in single-dose CBZ/GR treatment. When comparing the 2-week course of CBZ treatment with the 2-week course of CBZ/GR treatment, the MRT0-t and half-life of CBZ were increased. The AUC0-t, the Cmax and the half-life of CBZE were increased. CONCLUSION CBZ/GR treatment may reduce the auto-induction of CBZ over 2 weeks. While the reduction of auto-induction could enhance the therapeutic effects of CBZ, it could also lead to an increase in neurological side effects and non-neurological adverse effects. Our results provided preclinical evidence of herb-drug interaction, which may have implications for epilepsy patients treated with GR.
Collapse
Affiliation(s)
- Ka Lai Yip
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Xuelin Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, China
| | - Ping Chook
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong
| | - Ping Chung Leung
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong
| | - Steven Schachter
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States; Massachusetts General Hospital and Center for Integration of Medicine and Innovative Technology, Boston, MA, United States
| | - Vincent C T Mok
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Thomas W H Leung
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Chi Man Koon
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong.
| | - Howan Leung
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
13
|
Zhang G, Ji J, Sun M, Ji Y, Ji H. Comparative Pharmacokinetic Profiles of Puerarin in Rat Plasma by UHPLC-MS/MS after Oral Administration of Pueraria lobata Extract and Pure Puerarin. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2020; 2020:4258156. [PMID: 32351754 PMCID: PMC7178524 DOI: 10.1155/2020/4258156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/16/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
Puerarin is the main biologically active isoflavone in Pueraria lobata and has a wide range of biological activities. However, due to its poor water solubility and low oral bioavailability, its clinical applications are restricted. Compared with puerarin, the Pueraria lobata extract (PLE) has better water solubility, lower toxicity, and less side effects. In this study, the pharmacokinetics of orally administered puerarin (100 mg/kg) and PLE (763 mg/kg, equivalent to 100.0 mg/kg of puerarin) to rats was investigated by the UHPLC-MS/MS method. Results showed that when the rats were administered PLE, the area under the concentration-time curve from zero to infinity (AUC 0-inf ) dramatically increased from 219.83 ± 64.37 μg h/L to 462.62 ± 51.74 μg h/L (p < 0.01). The elimination half-time (t 1/2 ) also increased from 1.60 ± 0.38 h to 12.04 ± 5.10 h (p < 0.01). The maximum concentration (C max) of puerarin decreased from 101.64 ± 41.82 ng/mL to 48.64 ± 21.47 ng/mL (p < 0.01), and time to reach the maximum plasma concentration (T max) of puerarin decreased from 1.46 ± 1.08 h to 0.54 ± 0.30 h (p < 0.01). Results indicated that the pharmacokinetics of puerarin in Pueraria lobata may be dramatically different from pure puerarin in the plasma of rat, and oral bioavailability of puerarin may be increased when PLE was administrated to rats.
Collapse
Affiliation(s)
- Guozhe Zhang
- Department of Translational Medicine, Jiangsu Vocational College of Medicine, 283 South of Republic Road, Yancheng 224005, China
| | - Jianwei Ji
- Department of Pharmacy, Yancheng Third People's Hospital, 2 West of Xindu Road, Yancheng 224001, China
| | - Mingzhong Sun
- Department of Pharmacy, Yancheng Third People's Hospital, 2 West of Xindu Road, Yancheng 224001, China
| | - Yuqiao Ji
- Department of Pharmacy, Yancheng Third People's Hospital, 2 West of Xindu Road, Yancheng 224001, China
| | - Hongjian Ji
- Department of Pharmacy, Yancheng Third People's Hospital, 2 West of Xindu Road, Yancheng 224001, China
- Department of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing 210023, China
| |
Collapse
|
14
|
Zhang L. Pharmacokinetics and drug delivery systems for puerarin, a bioactive flavone from traditional Chinese medicine. Drug Deliv 2019; 26:860-869. [PMID: 31524010 PMCID: PMC6758605 DOI: 10.1080/10717544.2019.1660732] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 02/06/2023] Open
Abstract
Pueraria lobata (Willd.) Ohwi is a medicinal and edible homologous plant with a long history in China. Puerarin, the main component isolated from the root of Pueraria lobata, possesses a wide range of pharmacological properties. Daidzein and glucuronides are the main metabolites of puerarin and are excreted in the urine and feces. As active substrates of P-gp, multidrug resistance-associated protein and multiple metabolic enzymes, the pharmacokinetics of puerarin can be influenced by different pathological conditions and drug-drug interactions. Due to the poor water-solubility and liposolubility, the applications of puerarin are limited. So far, only puerarin injections and eye drops are on the market. Recent years, researches on improving the bioavailability of puerarin are developing rapidly, various nanotechnologies and preparation technologies including microemulsions and SMEDDS, dendrimers, nanoparticles and nanocrystals have been researched to improve the bioavailability of puerarin. In order to achieve biocompatibility and desired activity, more effective quality evaluations of nanocarriers are required. In this review, we summarize the pharmacokinetics and drug delivery systems of puerarin up to date.
Collapse
Affiliation(s)
- Liang Zhang
- College of Animal Pharmaceutical Sciences, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, PR China
| |
Collapse
|
15
|
Simultaneous Determination of Seven Active Components in Rat Plasma by UHPLC-MS/MS and Application to a Quantitative Study after Oral Administration of Huang-Lian Jie-Du Decoction in High Fat-Induced Atherosclerosis Rats. Int J Anal Chem 2019; 2019:5628160. [PMID: 31354826 PMCID: PMC6633874 DOI: 10.1155/2019/5628160] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/23/2019] [Accepted: 06/10/2019] [Indexed: 11/18/2022] Open
Abstract
Huang-Lian Jie-Du decoction (HLJDD) has been used to treat cardiovascular and cerebrovascular disease for many years in China. Currently, the determination of effect components in HLJDD is focusing either on the formula or on the extract, while quantification of that in biological samples is scarce, especially simultaneous determination of multicomponent. In this paper, a rapid, specific, and sensitive ultra-high performance liquid chromatography-tandem mass spectrometry method was developed and fully validated for the simultaneous determination of seven main active constituents, i.e., baicalin, baicalein, wogonoside, wogonin, berberine, palmatine, jatrorrhizine in rat plasma. The method was also successfully applied to a quantitative study after oral administration of HLJDD at different doses of 1.5, 3, and 6 g/kg body weight to high fat-induced atherosclerosis rats. The analytes were detected by ESI source and multiple reactions monitoring (MRM) using positive scanning mode. The blood was collected from the abdominal aorta of rats at predetermined time and preprepared with icariin and tetrahydropalmatine as internal standards (IS). Sample preparation was achieved by protein precipitation (PPT). The validation parameters (linearity, sensitivity, intra-/interday precision and accuracy, extraction recovery, and matrix effect) were within acceptable ranges, and biological extracts were stable during the entire storing and preparing process. And the result of determination of HLJDD-containing plasma, baicalin, baicalein, wogonoside, and wogonin could be highly detected in a dose-dependent manner while berberine, jatrorrhizine, and palmatine were determined in a very low level and in a dose-independent mode. Thus, the established method was sensitive enough and successfully applied to the determination of seven effective components in plasma taken from 24 high fat-induced atherosclerosis rats after oral administration of three dosages of HLJDD.
Collapse
|
16
|
Qiu K, Liu C, Shi Y, Yu X, Chen G, Wu J, Li G, Lv L. An LC-MS/MS Method for Synchronous Determination of Paclitaxel and Curcumin: Development, Validation, and Application to a Pharmacokinetic Study. CURR PHARM ANAL 2019. [DOI: 10.2174/1573412914666180222140839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Background:
A chromatography tandem mass spectrometry method was first established and
validated for the synchronous determination of curcumin(CUR) and paclitaxel (PTX) in this study.
</P><P>
Objective: An LC-MS/MS Method for Determination of Paclitaxel and Curcumin.
Methods:
The analytes were extracted with methanol, and docetaxel was used as the internal standard
(IS). The analytes and the IS were separated on a C18 (4.6 mm × 50 mm, 3.5 µm) column with a mobile
phase of 0.1% formic acid solution and methanol (80:20, v/v). The flow velocity of the mobile phase
was 0.5 mL/min. And then, the method was applied to study the pharmacokinetic behavior of CUR and
PTX in rats.
Results:
The calibration curves were linear within the concentration ranges of 2–1000 ng/mL for PTX
and 5–500 ng/mL for CUR, the mean extraction recoveries and matrix effects of PTX, CUR, and the IS
were within an acceptable range. The apparent volume of distribution of PTX was different between the
group of administration of PTX and the group of co-administration with CUR and PTX.
Conclusion:
A sensitive and simple liquid chromatography-tandem mass spectrometry method was
established and validated for the synchronous determination of PTX and CUR in rat plasma, CUR increased
the apparent volume of distribution of PTX when CUR and PTX were co-administered.
Collapse
Affiliation(s)
- Kaifeng Qiu
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong, China
| | - Chunxia Liu
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong, China
| | - Yonghui Shi
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong, China
| | - Xiaoxia Yu
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong, China
| | - Guanghui Chen
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong, China
| | - Junyan Wu
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong, China
| | - Guocheng Li
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong, China
| | - Li Lv
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong, China
| |
Collapse
|
17
|
Chen X, Yu J, Shi J. Management of Diabetes Mellitus with Puerarin, a Natural Isoflavone FromPueraria lobata. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 46:1771-1789. [DOI: 10.1142/s0192415x18500891] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Diabetes mellitus (DM) has become one of the most challenging public health problems globally. The increasing prevalence and mortality rates call for more effective therapeutic agents, especially for DM complications. Traditional herbs have a long clinical application history for DM treatment. Puerarin is a natural isoflavone from Pueraria lobata (Wild.) Ohwi which has been consumed both as a functional food and herb in Eastern Asia countries. Documented data has shown that puerarin has cardio-protective, neuroprotective, anti-oxidative, anti-inflammatory and many other effects. In this review, we will summarize the beneficial effects and underlying mechanisms of puerarin on DM and complications. Puerarin may directly benefit DM by decreasing blood glucose levels, improving insulin resistance, protecting islets, inhibiting inflammation, decreasing oxidative stress and inhibiting Maillard reaction and advanced glycation end products (AGEs) formation. Furthermore, puerarin may also benefit DM indirectly by retarding and improving a series of DM complications, such as cardiovascular complications, diabetic nephropathy, diabetic retinopathy, diabetic neuropathy, etc. However, comprehensive studies of its effect and mechanisms are needed. In addition, its efficacy is relatively low, which is partially due to its pharmacokinetics profiles. Though puerarin shows low toxicity to experimental animals, its safety on human remains to be clarified. Collectively, we suggest that puerarin might be a potential adjuvant agent for the treatment of DM and DM complications in future.
Collapse
Affiliation(s)
- Xiuping Chen
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563003, P. R. China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, P. R. China
| | - Jie Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, P. R. China
| | - Jingshan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563003, P. R. China
| |
Collapse
|
18
|
Liu CS, Liang X, Wei XH, Chen FL, Tang QF, Tan XM. Comparative pharmacokinetics of major bioactive components from Puerariae Radix-Gastrodiae Rhizome extracts and their intestinal absorption in rats. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1105:38-46. [PMID: 30562628 DOI: 10.1016/j.jchromb.2018.12.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/01/2018] [Accepted: 12/10/2018] [Indexed: 11/13/2022]
Abstract
Puerariae Radix (PR) and Gastrodiae Rhizome (GR) is frequently used in traditional herbal formulas to treat cardio-cerebral vascular diseases due to their synergistic effects. In this study, to elucidate the action mechanism of PR-GR in vivo, a simple and reliable ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method for simultaneous determination of nine bioactive ingredients from PR-GR in plasma was developed and applied to a comparative pharmacokinetic study following oral administration of PR, GR, and PR-GR aqueous extracts in rats. The effect of GR on the absorption of components of PR was also investigated by single-pass intestinal perfusion study. Results showed that comparing to the single herbs, PR-GR extract significantly increased the systemic exposure of puerarin, 3'-hydroxypuerarin, 3'-methoxypuerarin, 6″-O-xylosylpuerarin, daidzin, genistein, and gastrodin. Moreover, the intestinal absorption of puerarin and daidzin could be improved by GR extract and inhibitors of P-glycoprotein and multidrug resistanceassociated protein 2, respectively. These results indicate that the combination of PR and GR increases the levels of their bioactive ingredients exposed in the blood, and GR increases the absorption of ingredients of PR may by inhibition of the efflux mediated by P-glycoprotein and multidrug resistanceassociated protein 2. This is the first report for the pharmacokinetics and intestinal absorption of PR-GR, which may explain their synergetic effects in the treatment of circulatory systematic diseases and provide a meaningful insight for their clinical applications.
Collapse
Affiliation(s)
- Chang-Shun Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, PR China
| | - Xiao Liang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, PR China
| | - Xiao-Han Wei
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, PR China
| | - Fei-Long Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, PR China
| | - Qing-Fa Tang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, PR China
| | - Xiao-Mei Tan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, PR China.
| |
Collapse
|
19
|
Upregulation of UDP-Glucuronosyltransferases 1a1 and 1a7 Are Involved in Altered Puerarin Pharmacokinetics in Type II Diabetic Rats. Molecules 2018; 23:molecules23061487. [PMID: 29925761 PMCID: PMC6099598 DOI: 10.3390/molecules23061487] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/17/2018] [Accepted: 06/17/2018] [Indexed: 01/01/2023] Open
Abstract
Puerarin is an isoflavonoid extracted from Pueraria lobata roots, and displays a broad range of pharmacological activities, including antidiabetic activity. However, information about the pharmacokinetics of puerarin in diabetics is scarce. This study was conducted to investigate the difference in pharmacokinetic effects of puerarin in normal rats and rats with diabetes mellitus (DM), and the mechanism involved. DM was induced by a combined high-fat diet (HFD) and streptozotocin (STZ) injection. Plasma concentrations of puerarin in DM, HFD, and control rats were determined after intravenous (20 mg/kg) and oral administration (500 mg/kg) of puerarin, and pharmacokinetic parameters were estimated. The messenger RNA (mRNA) and protein expression levels of Ugt1a1 and Ugt1a7 in rat livers and intestines were measured using qRT-PCR and western blot, respectively. The area under the concentration–time curve and the clearance of puerarin in the DM rats statistically differed from those in the control rats (p <0.05) with both administration routes. The hepatic and intestinal gene and protein expressions of Ugt1a1 and Ugt1a7 were significantly increased in the DM rats (p <0.05). Therefore, the metabolic changes in diabetes could alter the pharmacokinetics of puerarin. This change could be caused by upregulated uridine diphosphate (UDP)-glucuronosyltransferase activity, which may enhance puerarin clearance, and alter its therapeutic effects.
Collapse
|
20
|
Liu Y, Gao J, Peng M, Meng H, Ma H, Cai P, Xu Y, Zhao Q, Si G. A Review on Central Nervous System Effects of Gastrodin. Front Pharmacol 2018; 9:24. [PMID: 29456504 PMCID: PMC5801292 DOI: 10.3389/fphar.2018.00024] [Citation(s) in RCA: 249] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 01/09/2018] [Indexed: 11/21/2022] Open
Abstract
Rhizoma Gastrodiae (also known as Tian ma), the dried rhizome of Gastrodia elata Blume, is a famous Chinese herb that has been traditionally used for the treatment of headache, dizziness, spasm, epilepsy, stoke, amnesia and other disorders for centuries. Gastrodin, a phenolic glycoside, is the main bioactive constituent of Rhizoma Gastrodiae. Since identified in 1978, gastrodin has been extensively investigated on its pharmacological properties. In this article, we reviewed the central nervous system (CNS) effects of gastrodin in preclinical models of CNS disorders including epilepsy, Alzheimer's disease, Parkinson's disease, affective disorders, cerebral ischemia/reperfusion, cognitive impairment as well as the underlying mechanisms involved and, where possible, clinical data that support the pharmacological activities. The sources and pharmacokinetics of gastrodin were also reviewed here. As a result, gastrodin possesses a broad range of beneficial effects on the above-mentioned CNS diseases, and the mechanisms of actions include modulating neurotransmitters, antioxidative, anti-inflammatory, suppressing microglial activation, regulating mitochondrial cascades, up-regulating neurotrophins, etc. However, more detailed clinical trials are still in need for positioning it in the treatment of neurological disorders.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jialiang Gao
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Peng
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Hongyan Meng
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Hongbo Ma
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Pingping Cai
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Yuan Xu
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Qiong Zhao
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Guomin Si
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
21
|
Liu J, Chen S, Cheng J, Zhang J, Wang Y, Liu A. An Optimized and Sensitive Pharmacokinetic Quantitative Method of Investigating Gastrodin, Parishin, and Parishin B, C and E in Beagle Dog Plasma using LC-MS/MS after Intragastric Administration of Tall Gastrodia Capsules. Molecules 2017; 22:molecules22111938. [PMID: 29125575 PMCID: PMC6150220 DOI: 10.3390/molecules22111938] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 11/16/2022] Open
Abstract
Gastrodia elata Blume, called Tianma in China, has been widely used to treat headaches, convulsions and epilepsy for thousands of years. In the present study, a series of optimizations were employed to develop a rapid, sensitive, and reliable high-performance liquid chromatography-triple quadrupole mass spectrometry method, which was then used for the simultaneous determination of gastrodin, parishin, parishin B, parishin C and parishin E in beagle dog plasma after intragastric administration of tall Gastrodia capsules (Tianma brand). The chromatographic separation was achieved on a C18 column with gradient elution by using a mixture of 0.4% formic acid aqueous solution and acetonitrile as the mobile phase at a flow rate of 0.15 mL/min. A tandem mass spectrometric detection was conducted using multiple-reaction monitoring (MRM) via electrospray ionization (ESI) source in negative ionization mode. Samples were pre-treated by a single-step protein precipitation with methanol, and bergenin was used as internal standard (IS). Under the optimized conditions, the lower limit of quantification (LLOQ) was 0.10 ng/mL for gastrodin, 0.40 ng/mL for parishin B, 0.02 ng/mL for parishin E and 0.20 ng/mL for parishin and parishin C, all of which previously were the highest levels of sensitivity. The methods were optimized for selectivity, calibration curves, accuracy and precision. Extraction recoveries, matrix effects and stability were within acceptable ranges. Pharmacokinetic parameters of the tested substances were also quantitatively determined. Finally, a possible metabolic pathway was induced based on correlations obtained from quantitative and qualitative data analysis in vivo.
Collapse
Affiliation(s)
- Junqiu Liu
- Key laboratory of Beijing for identification and safety evaluation of Chinese medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, China.
| | - Sha Chen
- Key laboratory of Beijing for identification and safety evaluation of Chinese medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, China.
| | - Jintang Cheng
- Key laboratory of Beijing for identification and safety evaluation of Chinese medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, China.
| | - Jun Zhang
- Key laboratory of Beijing for identification and safety evaluation of Chinese medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, China.
| | - Yuesheng Wang
- Key laboratory of Beijing for identification and safety evaluation of Chinese medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, China.
| | - An Liu
- Key laboratory of Beijing for identification and safety evaluation of Chinese medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, China.
| |
Collapse
|
22
|
Simultaneous determination of ferulic acid and gastrodin of Tianshu Capsule in rat plasma by ultra-fast liquid chromatography with tandem mass spectrometry and its application to a comparative pharmacokinetic study in normal and migraine rats. J Sep Sci 2017; 40:4120-4127. [DOI: 10.1002/jssc.201700665] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/24/2017] [Accepted: 08/16/2017] [Indexed: 11/07/2022]
|
23
|
Wu YK, Chen CC, Lin TW, Tsai PC, Kuo CF. Absolute bioavailability, tissue distribution, and excretion of 2,4,5-trimethoxybenzaldehyde in rats. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.05.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
24
|
Glycyrrhetic acid, but not glycyrrhizic acid, strengthened entecavir activity by promoting its subcellular distribution in the liver via efflux inhibition. Eur J Pharm Sci 2017. [PMID: 28627473 DOI: 10.1016/j.ejps.2017.06.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Entecavir (ETV) is a superior nucleoside analogue used to treat hepatitis B virus (HBV) infection. Although its advantages over other agents include low viral resistance and the elicitation of a sharp decrease in HBV DNA, adverse effects such as hepatic steatosis, hepatic damage and lactic acidosis have also been reported. Glycyrrhizin has long been used as hepato-protective medicine. The clinical combination of ETV plus glycyrrhizin in China displays better therapeutic effects and lower rates of liver damage. However, there is little evidence explaining the probable synergistic mechanism that exists between these two drugs from a pharmacokinetics view. Here, alterations in the plasma pharmacokinetics, tissue distribution, subcellular distribution, and in vitro and in vivo antiviral activity of ETV after combination with glycyrrhizic acid (GL) were analysed to determine the synergistic mechanisms of these two drugs. Specific efflux transporter membrane vesicles were also used to elucidate their interactions. The primary active GL metabolite, glycyrrhetic acid (GA), did not affect the plasma pharmacokinetics of ETV but promoted its accumulation in hepatocytes, increasing its distribution in the cytoplasm and nucleus and augmenting the antiviral efficiency of ETV. These synergistic actions were primarily due to the inhibitory effect of GA on MRP4 and BCRP, which transport ETV out of hepatocytes. In conclusion, GA interacted with ETV at cellular and subcellular levels in the liver through MRP4 and BCRP inhibition, which enhanced the antiviral activity of ETV. Our results partially explain the synergistic mechanism of ETV and GL from a pharmacokinetics view, providing more data to support the use of these compounds together in clinical HBV treatment.
Collapse
|
25
|
Jiang Z, Zheng X, Gong X, Zhao C, Zhou X, Zhao Y, Yan Y. Relative tissue distribution and excretion studies of gastrodin and parishin from powder and extract of Gastrodiae Rhizoma in rat by UHPLC-ESI-MS/MS. Biomed Chromatogr 2017; 31. [PMID: 27925254 DOI: 10.1002/bmc.3909] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/27/2016] [Accepted: 11/29/2016] [Indexed: 12/21/2022]
Abstract
New research has indicated that Gastrodiae Rhizome (GR) has potential anti-diabetic and anti-asthmatic effects in mouse models. On the basis of our previous study of the relative bioavailability of gastrodin (GAS) and parishin (PA) from extract and powder of GR, we performed further research on the tissue distribution and excretion of the two analytes. A reliable bioanalytical method for the quantification of GAS and PA in rat tissues and excretion is required. Chromatographic separation was carried out on a gradient mobile phase of acetonitrile-water with 0.1% formic acid. Calibration curves (1/x2 weighted) offered satisfactory linearity (r2 > 0.9835) within 100-3000 ng mL-1 for GAS and (r2 > 0.9862) within 10-1000 ng mL-1 for PA. The relative standard deviations of the intra-day and inter-day precision were all <14.98%, whilst the relative errors of the intra-day and inter-day accuracy were all within ±14.71%. The matrix effect and recovery values were satisfactory in all of the biological matrices examination. The data of relative differences in tissue distribution and excretion of GAS and PA from powder and extract of GR indicated that higher bioavailabilities for GAS and PA were obtained when a dosage of 4 g kg-1 GR powder was used.
Collapse
Affiliation(s)
- Zhengmeng Jiang
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, Guizhou, People's Republic of China.,Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang, Guizhou, People's Republic of China.,The Research Center for Quality Control of Natural Medicine, Guizhou Normal University, Guiyang, Guizhou, People's Republic of China
| | - Xiuyan Zheng
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, Guizhou, People's Republic of China.,Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang, Guizhou, People's Republic of China
| | - Xiaojian Gong
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, Guizhou, People's Republic of China.,Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang, Guizhou, People's Republic of China.,The Research Center for Quality Control of Natural Medicine, Guizhou Normal University, Guiyang, Guizhou, People's Republic of China
| | - Chao Zhao
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, Guizhou, People's Republic of China.,Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang, Guizhou, People's Republic of China.,The Research Center for Quality Control of Natural Medicine, Guizhou Normal University, Guiyang, Guizhou, People's Republic of China
| | - Xin Zhou
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, Guizhou, People's Republic of China.,Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang, Guizhou, People's Republic of China.,The Research Center for Quality Control of Natural Medicine, Guizhou Normal University, Guiyang, Guizhou, People's Republic of China
| | - Yang Zhao
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, Guizhou, People's Republic of China.,Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang, Guizhou, People's Republic of China.,The Research Center for Quality Control of Natural Medicine, Guizhou Normal University, Guiyang, Guizhou, People's Republic of China
| | - Yanfang Yan
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, Guizhou, People's Republic of China.,Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang, Guizhou, People's Republic of China.,The Research Center for Quality Control of Natural Medicine, Guizhou Normal University, Guiyang, Guizhou, People's Republic of China
| |
Collapse
|
26
|
A Novel Microspheres Formulation of Puerarin: Pharmacokinetics Study and In Vivo Pharmacodynamics Evaluations. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:4016963. [PMID: 28119759 PMCID: PMC5227308 DOI: 10.1155/2016/4016963] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 11/25/2016] [Accepted: 12/08/2016] [Indexed: 01/04/2023]
Abstract
The aim of this study was to investigate the pharmacokinetics and pharmacodynamics of puerarin loaded carboxymethyl chitosan microspheres (Pue-CCMs). The differences in pharmacokinetics parameters of rats after intragastric administration of Pue-CCMs and puerarin were investigated using HPLC. To assess the protective effect of Pue-CCMs on myocardial injury in rats, serum levels of creatine kinase (CK), lactate dehydrogenase (LDH), total superoxide dismutase (T-SOD), and malondialdehyde (MDA) were measured, in addition to pathological examinations and immunohistochemical staining. Our present study has shown that the AUC0–t, Cmax, Tmax, MRT0–t of Pue-CCMs, and puerarin were 20.176 mg·h/L, 3.778 μg/mL, 1 h, 4.634 h and 9.474 mg·h/L, 2.618 μg/mL, 0.542 h, and 3.241 h, respectively. Pue-CCMs alleviated myocardial ischemic injury. Pretreatment with Pue-CCMs could significantly decrease CK, LDH, and MDA levels and increase T-SOD level in the serum. Pue-CCMs downregulated expression of the Bcl-2 associated X protein (Bax) and upregulated B-cell lymphoma-2 (Bcl-2) expression. Compared with puerarin group, the Pue-CCMs group could improve the oral bioavailability of puerarin. The protective effect of Pue-CCMs against myocardial injury was significantly greater than puerarin at the same dose. In summary, Pue-CCMs should be a qualified and promising candidate as a new oral preparation of puerarin.
Collapse
|
27
|
Sun H, Bo Y, Zhang M, Wu X, Zhou M, Zhao L, Xiong Z. Simultaneous determination of epalrestat and puerarin in rat plasma by UHPLC-MS/MS: Application to their pharmacokinetic interaction study. Biomed Chromatogr 2016; 31. [DOI: 10.1002/bmc.3855] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/03/2016] [Accepted: 09/16/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Hong Sun
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang People's Republic of China
| | - Yunhai Bo
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang People's Republic of China
| | - Mingjie Zhang
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang People's Republic of China
| | - Xiao Wu
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang People's Republic of China
| | - Mingyang Zhou
- College of Chemistry; Nankai University; Tianjin People's Republic of China
| | - Longshan Zhao
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang People's Republic of China
| | - Zhili Xiong
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang People's Republic of China
| |
Collapse
|
28
|
Liu X, Ding Y, Zhao B, Liu Y, Luo S, Wu J, Li J, Xiang D. In vitro and in vivo evaluation of puerarin-loaded PEGylated mesoporous silica nanoparticles. Drug Dev Ind Pharm 2016; 42:2031-2037. [PMID: 27282345 DOI: 10.1080/03639045.2016.1190742] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Xinyi Liu
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, PR China
- Institution of Clinical Pharmacy of Central South University, Changsha, PR China
| | - Yuxiang Ding
- Institution of Clinical Pharmacy of Central South University, Changsha, PR China
| | - Bingjie Zhao
- School of Pharmaceutical Sciences, Central South University, Changsha, PR China
| | - Yuanyuan Liu
- Hunan Testing Institute for Medical Devices and Pharmaceutical Packaging Material, Changsha, PR China
| | - Shilin Luo
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, PR China
- Institution of Clinical Pharmacy of Central South University, Changsha, PR China
| | - Junyong Wu
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, PR China
- School of Pharmaceutical Sciences, Central South University, Changsha, PR China
| | - Jianhe Li
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, PR China
- Institution of Clinical Pharmacy of Central South University, Changsha, PR China
| | - Daxiong Xiang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, PR China
- Institution of Clinical Pharmacy of Central South University, Changsha, PR China
| |
Collapse
|
29
|
Absorptive interactions of concurrent oral administration of (+)-catechin and puerarin in rats and the underlying mechanisms. Acta Pharmacol Sin 2016; 37:545-54. [PMID: 26972494 DOI: 10.1038/aps.2015.164] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 12/07/2015] [Indexed: 12/19/2022]
Abstract
AIM (+)-Catechin and puerarin are polyphenol and flavonoid, respectively, in green tea and foodstuffs. They exhibit potent antioxidant activity and are widely used for treating cardiocerebrovascular diseases. The aim of this work was to investigate the potential interactions between (+)-catechin and puerarin following concurrent oral administration in rats, and their absorption mechanisms in Caco-2 cell monolayers. METHODS Pharmacokinetic studies were conducted in male rats received (+)-catechin (140 mg/kg, po) and/or puerarin (200 mg/kg, po). The cell uptake and transport behavior in Caco-2 cell monolayers and the interactions of the two compounds were analyzed. RESULTS When (+)-catechin and puerarin were administered concurrently, the AUC0-12 h and Cmax values of puerarin were 2.48-fold and 3.91-fold, respectively, as large as those of puerarin alone; the AUC0-12 h and Cmax values of (+)-catechin were decreased to 57.62% and 77.55%, respectively, compared with those of (+)-catechin alone. In Caco-2 cell monolayers, (+)-catechin (300 and 600 μmol/L) significantly increased the cell uptake and transport of puerarin, whereas puerarin (300 and 600 μmol/L) significantly decreased the cellular uptake and transport of (+)-catechin. Furthermore, both cyclosporine A (P-glycoprotein inhibitor) and MK-571 (MRP-2 inhibitor) significantly increased the cellular uptake and transport of (+)-catechin and puerarin. CONCLUSION Concurrent oral administration of (+)-catechin and puerarin significantly increased the absolute oral bioavailability of puerarin, but decreasing that of (+)-catechin. The competitive efflux of (+)-catechin and puerarin by P-glycoprotein and MRP-2 might lead to this interaction during their absorption process in the small intestine.
Collapse
|
30
|
Ji W, Zhang M, Wang D, Wang X, Liu J, Huang L. Superhydrophilic molecularly imprinted polymers based on a water-soluble functional monomer for the recognition of gastrodin in water media. J Chromatogr A 2015; 1425:88-96. [PMID: 26627582 DOI: 10.1016/j.chroma.2015.11.053] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/14/2015] [Accepted: 11/16/2015] [Indexed: 11/17/2022]
Abstract
In this study, the first successfully developed superhydrophilic molecularly imprinted polymers (MIPs) for gastrodin recognition have been described. MIPs were prepared via the bulk polymerization process in an aqueous solution using alkenyl glycosides glucose (AGG) as the water-soluble functional monomer. The non-imprinted polymers (NIPs) were also synthesized using the same method without the use of the template. The dynamic water contact angles and photographs of the dispersion properties confirmed that the molecularly imprinted polymers displayed excellent superhydrophilicity. The results demonstrated that the MIPs exhibited high selectivity and an excellent imprinting effect. A molecularly imprinted solid phase extraction (MISPE) method was established. Optimization of various parameters affecting MISPE was investigated. Under the optimized conditions, a wide linear range (0.001-100.0μgmL(-1)) and low limits of detection (LOD) and quantification (LOQ) (0.03 and 0.09ngmL(-1), respectively) were achieved. When compared with the NIPs, higher recoveries (90.5% to 97.6%) of gastrodin with lower relative standard deviations values (below 6.4%) using high performance liquid chromatography were obtained at three spiked levels in three blank samples. These results demonstrated one efficient, highly selective and environmentally-friendly MISPE technique with excellent reproducibility for the purification and pre-concentration of gastrodin from an aqueous extract of Gastrodia elata roots.
Collapse
Affiliation(s)
- Wenhua Ji
- Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center, Shandong Academy of Sciences, 19 Keyuan Street, Jinan 250014, China
| | - Mingming Zhang
- School of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Daijie Wang
- Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center, Shandong Academy of Sciences, 19 Keyuan Street, Jinan 250014, China
| | - Xiao Wang
- Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center, Shandong Academy of Sciences, 19 Keyuan Street, Jinan 250014, China.
| | - Jianhua Liu
- Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center, Shandong Academy of Sciences, 19 Keyuan Street, Jinan 250014, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, State Key Laboratory Breeding Base of Dao-di Herbs, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
31
|
Yang R, Miao D, Liang Y, Qu L, Li J, Harrington PDB. Ultrasensitive electrochemical sensor based on CdTe quantum dots-decorated poly(diallyldimethylammonium chloride)-functionalized graphene nanocomposite modified glassy carbon electrode for the determination of puerarin in biological samples. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.05.139] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
32
|
Prolonged oral administration of Gastrodia elata extract improves spatial learning and memory of scopolamine-treated rats. Lab Anim Res 2015; 31:69-77. [PMID: 26155201 PMCID: PMC4490148 DOI: 10.5625/lar.2015.31.2.69] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/01/2015] [Accepted: 04/08/2015] [Indexed: 01/13/2023] Open
Abstract
Gastrodia elata (GE) is traditionally used for treatment of various disorders including neurodegenerative diseases such as Alzheimer's disease. To investigate the neuroprotective effect of GE, amyloid-β peptide (Aβ)-treated PC12 cells were cultured with GE aqueous extract. In vitro assay demonstrated that 50 µM of pre-aggregated Aβ was lethal to about a half portion of PC12 cells and that Aβ aggregate-induced cell death was significantly decreased with GE treatment at ≤10 mg/mL in a dose-dependent manner. To further examine in vivo cognitive-improving effects, an artificial amnesic animal model, scopolamine-injected Sprague-Dawley rats, were orally administered the extract for 6 weeks followed by behavioral tests (the passive avoidance test and Morris water maze test). The results showed that an acute treatment with scopolamine (1 mg/kg of body weight) effectively induced memory impairment in normal rats and that the learning and memory capability of scopolamine-treated rats improved after prolonged administration of GE extract (50, 250 and 500 mg/kg of body weight for 6 weeks). These findings suggest that a GE regimen may potentially ameliorate learning and memory deficits and/or cognitive impairments caused by neuronal cell death.
Collapse
|
33
|
Xu B, Li P, Zhang G. Comparative pharmacokinetics of puerarin, daidzin, baicalin, glycyrrhizic acid, liquiritin, berberine, palmatine and jateorhizine by liquid chromatography-mass spectrometry after oral administration of Gegenqinlian decoction and active components alignment (ACA) to rats. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 988:33-44. [PMID: 25746576 DOI: 10.1016/j.jchromb.2015.01.039] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 01/27/2015] [Accepted: 01/29/2015] [Indexed: 11/25/2022]
Abstract
An LC-MS/MS method was developed for simultaneous analysis of puerarin, daidzin, baicalin, glycyrrhizic acid, liquiritin, berberine, palmatine and jateorhizine of Gegenqinlian Decoction (GQD) and active components alignment (ACA) in rat plasma using hesperidin as the internal standard (I.S.). Chromatography was performed using a C18 column, with gradient elution with 1% acetic acid-0.001 mol/L ammonium acetate and acetonitrile at 0.2 ml/min. All analytes including I.S. were monitored under positive ionization conditions by selected reaction monitoring with an electrospray ionization source. The optimized mass transition ion-pairs (m/z) for quantitation were 471/297 for puerarin, 471/255 for daidzin, 447/271 for baicalin, 823/453 for glycyrrhizic acid, 419/257 for liquiritin, 336/320 for berberine, 352/336 for palmatine, 338/322 for jateorhizine and 611/303 for hesperidin. The calibration curves were linear over the concentration ranges from 0.15-63.0 to 6.3-6340.0 ng/mL. Intra-day and inter-day precisions (RSD%) were within 15.0%, and accuracy (RE%) ranged from -7.4 to 13.2%. The extraction recoveries were ranged from 60.4 to 93.3%. The proposed method was further applied to compare the pharmacokinetics of all analytes following a single oral administration of GQD and ACA. In conclusion, the eight analytes of GQD and ACA had partly similar pharmacokinetics, which were different from single composition (such as puerarin).
Collapse
Affiliation(s)
- Beilei Xu
- Research Center on Life Sciences and Environmental Sciences, Harbin University of Commerce, Harbin 150076, Heilongjiang, China; School of Pharmacy, Harbin University of Commerce, Harbin 150076, Heilongjiang, China
| | - Pengyue Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, Beijing, China
| | - Guijun Zhang
- School of Chinese Pharmacology, Beijing University of Chinese Medicine, Beijing 100102, Beijing, China.
| |
Collapse
|
34
|
Huihua Q, Feng W, Wenchao S, Xueqian W, Jinjun C, Hui K, Yan Z, Qingguo W. Pharmacokinetic analysis of orally administered puerarin in human saliva using an indirect competition ELISA. ANALYTICAL METHODS 2015; 7:8335-8343. [DOI: 10.1039/c5ay01132a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The pharmacokinetics of puerarin in human saliva following oral administration of pueraria capsules were successfully studied by an icELISA method.
Collapse
Affiliation(s)
- Qu Huihua
- Center of Scientific Experiment
- Beijing University of Chinese Medicine
- Beijing
- China
| | - Wan Feng
- School of Basic Medical Sciences
- Beijing University of Chinese Medicine
- Beijing
- China
| | - Shan Wenchao
- School of Chinese Materia Medica
- Beijing University of Chinese Medicine
- Beijing
- China
| | - Wang Xueqian
- School of Basic Medical Sciences
- Beijing University of Chinese Medicine
- Beijing
- China
| | - Cheng Jinjun
- School of Chinese Materia Medica
- Beijing University of Chinese Medicine
- Beijing
- China
| | - Kong Hui
- School of Basic Medical Sciences
- Beijing University of Chinese Medicine
- Beijing
- China
| | - Zhao Yan
- School of Basic Medical Sciences
- Beijing University of Chinese Medicine
- Beijing
- China
| | - Wang Qingguo
- School of Basic Medical Sciences
- Beijing University of Chinese Medicine
- Beijing
- China
| |
Collapse
|
35
|
Pharmacokinetic Comparative Study of Gastrodin and Rhynchophylline after Oral Administration of Different Prescriptions of Yizhi Tablets in Rats by an HPLC-ESI/MS Method. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:167253. [PMID: 25610474 PMCID: PMC4281461 DOI: 10.1155/2014/167253] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 11/13/2014] [Accepted: 11/21/2014] [Indexed: 11/17/2022]
Abstract
Pharmacokinetic characters of rhynchophylline (RIN), gastrodin (GAS), and gastrodigenin (p-hydroxybenzyl alcohol, HBA) were investigated after oral administration of different prescriptions of Yizhi: Yizhi tablets or effective parts of tianma (total saponins from Gastrodiae, EPT) and gouteng (rhynchophylla alkaloids, EPG). At different predetermined time points after administration, the concentrations of GAS, HBA, and RIN in rat plasma were determined by an HPLC-ESI/MS method, and the main pharmacokinetic parameters were investigated. The results showed that the pharmacokinetic parameters C max and AUC0-∞ (P < 0.05) were dramatically different after oral administration of different prescriptions of Yizhi. The data indicated that the pharmacokinetic processes of GAS, HBA, and RIN in rats would interact with each other or be affected by other components in Yizhi. The rationality of the compatibility of Uncaria and Gastrodia elata as a classic "herb pair" has been verified from the pharmacokinetic viewpoint.
Collapse
|
36
|
Zhao Y, Gong XJ, Zhou X, Kang ZJ. Relative bioavailability of gastrodin and parishin from extract and powder of Gastrodiae rhizoma in rat. J Pharm Biomed Anal 2014; 100:309-315. [PMID: 25194344 DOI: 10.1016/j.jpba.2014.08.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 08/06/2014] [Accepted: 08/08/2014] [Indexed: 10/24/2022]
Abstract
A rapid, sensitive and reliable UHPLC-ESI-MS/MS method was developed for simultaneous determination of gastrodin and parishin in rat plasma. The LLOQ of the two analytes were 1.00×10(-1) and 8.30×10(-5)μg/mL, respectively. The intra-day and inter-day precision were all less than 10% of the relative standard deviation (RSD), whilst the accuracy were all within ±15% of the relative error (RE). The proposed method was successfully applied for pharmacokinetics study on the two analytes in rats after oral administration of Gastrodiae rhizoma (GR) extract and powder at low, medium and high dosages. Blood samples were collected from the suborbital vein at predetermined time points and were precipitated using methanol. Chromatographic separations were carried out on a Kinetex XB-C18 column (2.1mm×150mm, 1.7μm) with a gradient mobile phase of acetonitrile-water with 0.1% formic acid as a modifier. The pharmacokinetic parameters of the two analytes in rats were obtained and the relative bioavailability of gastrodin and parishin in two formulations were calculated. The results indicated that higher bioavailability was obtained when low dosage of GR powder was used, whereas, higher bioavailability values were obtained when medium and high dosages of GR extract were used.
Collapse
Affiliation(s)
- Yang Zhao
- Guizhou Key Laboratory for Mountainous Environmental Information and Ecological Protection, Guiyang 550001, China; The Research Center for Quality Control of Natural Medicine, Guizhou Normal University, Guiyang 550001, China
| | - Xiao-Jian Gong
- Guizhou Key Laboratory for Mountainous Environmental Information and Ecological Protection, Guiyang 550001, China; The Research Center for Quality Control of Natural Medicine, Guizhou Normal University, Guiyang 550001, China
| | - Xin Zhou
- Guizhou Key Laboratory for Mountainous Environmental Information and Ecological Protection, Guiyang 550001, China; The Research Center for Quality Control of Natural Medicine, Guizhou Normal University, Guiyang 550001, China.
| | - Zhi-Jiao Kang
- Guizhou Key Laboratory for Mountainous Environmental Information and Ecological Protection, Guiyang 550001, China; The Research Center for Quality Control of Natural Medicine, Guizhou Normal University, Guiyang 550001, China
| |
Collapse
|
37
|
Jia Y, Li X, Xie H, Shen J, Luo J, Wang J, Wang KDG, Liu Q, Kong L. Analysis and pharmacokinetics studies of gastrodin and p-hydroxybenzyl alcohol in dogs using ultra fast liquid chromatography-tandem mass spectrometry method. J Pharm Biomed Anal 2014; 99:83-8. [PMID: 25108372 DOI: 10.1016/j.jpba.2014.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 06/04/2014] [Accepted: 07/03/2014] [Indexed: 10/25/2022]
Abstract
A simple, sensitive and reliable ultra fast liquid chromatography-electrospray ionization-tandem mass spectrometry (UFLC-ESI-MS/MS) method was developed for simultaneously quantifying gastrodin (p-hydroxy-methyl-phenol-β-d-glucoside) and its metabolite p-hydroxybenzyl alcohol (HBA) in dog plasma. Separation was performed on an ultra fast liquid chromatography (UFLC) system. Detection was carried out on a tandem mass spectrometry (MS/MS) in multiple reaction monitoring (MRM) mode via an electrospray ionization (ESI) interface. MRM mode of precursor-product ion transitions was used for gastrodin, HBA and the internal standard (IS, bergeninum) at m/z 285.0→123.0, 123.0→105.0 and 326.9→192.2, respectively. The lower limits of quantification (LLOQ) of this method for both gastrodin and HBA were 1ng/mL, with their linear concentration ranging from 0.001 to 10μg/mL. The methods were validated for selectivity, calibration curves, accuracy and precision, extraction recoveries, matrix effects, carry-over, cross talk, dilution integrity, stability and incurred sample reanalysis (ISR). Using this validated method, pharmacokinetic behaviors of gastrodin and HBA after intragastric administration (ig) of gastrodin to dogs were studied for the first time.
Collapse
Affiliation(s)
- Yuanwei Jia
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China; Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital, Wannan Medical College, Wuhu 241001, Anhui, People's Republic of China
| | - Xin Li
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Haitang Xie
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital, Wannan Medical College, Wuhu 241001, Anhui, People's Republic of China
| | - Jie Shen
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital, Wannan Medical College, Wuhu 241001, Anhui, People's Republic of China
| | - Jun Luo
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Junsong Wang
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Kelvin D G Wang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Qingwang Liu
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China.
| |
Collapse
|
38
|
White pepper and piperine have different effects on pharmacokinetics of puerarin in rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:796890. [PMID: 24991227 PMCID: PMC4058586 DOI: 10.1155/2014/796890] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 04/10/2014] [Accepted: 05/11/2014] [Indexed: 11/26/2022]
Abstract
This study attempted to explore the effects of white pepper and its major component piperine on puerarin administered to rats. Pharmacokinetic parameters of puerarin in rats were determined by oral administration (400 mg/kg) or intravenous injection (40 mg/kg) of puerarin, pretreated with or without white pepper and piperine given orally. Compared to the control group given oral puerarin only, the combined use of piperine (10 or 20 mg/kg) increased the Cmax of puerarin by 1.30-fold or 1.64-fold and the AUC0–∞ by 133% or 157%, respectively. In contrast, coadministration of white pepper (125 or 250 mg/kg) decreased oral absorption of puerarin to 83% or 74%, respectively. On the other hand, pretreatment with piperine orally did not alter the intravenous pharmacokinetics of puerarin, while the AUC of puerarin after intravenous administration was increased by pretreatment with white pepper. The results indicate that pretreatment with piperine or pepper exerts different effects on pharmacokinetics of puerarin administrated via intragastric and intravenous routes. Therefore, it is suggested that the combined application of piperine or white pepper with puerarin should be carefully monitored for potential diet-drug interactions.
Collapse
|
39
|
Determination of puerarin in rat plasma using PEGylated magnetic carbon nanotubes by high performance liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 959:55-61. [DOI: 10.1016/j.jchromb.2014.03.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/28/2014] [Accepted: 03/30/2014] [Indexed: 01/12/2023]
|
40
|
Li H, Dong L, Liu Y, Wang G, Wang G, Qiao Y. Biopharmaceutics classification of puerarin and comparison of perfusion approaches in rats. Int J Pharm 2014; 466:133-8. [PMID: 24607203 DOI: 10.1016/j.ijpharm.2014.03.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 03/03/2014] [Accepted: 03/03/2014] [Indexed: 12/18/2022]
Abstract
The present study was conducted to characterize the biopharmaceutics classification system (BCS) category of puerarin in terms of intrinsic dissolution rate (IDR) and rat intestinal permeability and to investigate the poor intestinal absorption probably related to the drug metabolism in the gut wall of rats. Equilibrium solubility of puerarin was determined in various phosphate buffers and water, and IDR was estimated by measuring the dissolution of a non-disintegrating compact. Intestinal permeability (Peff and Pblood) of puerarin was determined using the technology of in situ single-pass intestinal perfusion (SPIP) and intestinal perfusion with venous sampling (IPVS) in fasted rats. Metabolism of puerarin in intestinal tissue was tested by S9 incubation in vitro. The aqueous solubility of puerarin in phosphate buffers and water was good with a maximum solubility of 7.56 mg/mL at pH 7.4. Obtained IDR values of puerarin were in the range of 0.360-1.088 mg/min/cm(2), with maximum and minimum IDR value of pH 7.4 and pH 4.0, respectively. The Peff was 1.252 × 10(-5)cm/s determined by SPIP and the Pblood was 0.068×10(-5)cm/s by IPVS in jejunum at puerarin 80 μg/mL. The metabolism rate of puerarin determined by the intestinal S9 fraction indicated that the gut wall metabolism of puerarin is one cause of poor absorption. According to the proposed classification of drugs and the results obtained from equilibrium solubility, IDR, Peff and Pblood, it is concluded that puerarin could be categorized IV drug of the BCS based on its low solubility and low intestinal permeability values.
Collapse
Affiliation(s)
- Hewei Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, PR China.
| | - Ling Dong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, PR China.
| | - Yang Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, PR China
| | - Guopeng Wang
- Zhongcai Health (Beijing) Biological Technology Development Co., Ltd., Beijing, PR China
| | - Gang Wang
- Zhongcai Health (Beijing) Biological Technology Development Co., Ltd., Beijing, PR China
| | - Yanjiang Qiao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, PR China
| |
Collapse
|
41
|
Qu H, Zhang G, Li Y, Sun H, Sun Y, Zhao Y, Wang Q. Development of an enzyme-linked immunosorbent assay based on anti-puerarin monoclonal antibody and its applications. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 953-954:120-5. [DOI: 10.1016/j.jchromb.2014.01.051] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 01/26/2014] [Accepted: 01/29/2014] [Indexed: 10/25/2022]
|