1
|
Cheng Q, Yu Y, Wan Z, Zhou M, Tang W, Tan W, Liu M. Structure-based design and screening of hydrogel copolymer/Fe 3O 4 composite microspheres for magnetic solid phase extraction of bisphenol A from aqueous samples. Talanta 2025; 283:127178. [PMID: 39520927 DOI: 10.1016/j.talanta.2024.127178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
It is of great significance to monitor bisphenol A (BPA) in the environment because of its potential environmental and health risks. However, the detection of trace or ultratrace BPA in complicated environmental samples is challenging due to the relatively low affinity and poor selectivity of existing adsorbents used in sample pretreatment. Herein, we report a high-affinity, low environment-dependent and strong interference-resistant abiotic affinity ligand, a N-methacryloyl-l-lysine-NH2 (MLys)-based hydrogel copolymer (HP 17) screened from a small focused polymer library engineered by incorporating various combinations and ratios of candidate functional monomers. The selection of these monomers was guided by molecular mechanism between BPA and the ligand-binding pocket of its estrogen receptors. The BPA-HP17 binding is mainly a synergistic effect of π-cation and hydrophobic interactions. The screened HP 17 has high adsorption capacity (349.4 mg/g) for BPA under wide pH (3.0-10.0) and ionic strength (0-150 mM) range. To improve its practicability, a hydrogel copolymer/Fe3O4 composite microspheres (Fe3O4@HP 17) was synthesized and applied for magnetic solid phase extraction-high-performance liquid chromatography (MSPE-HPLC) analysis of BPA in tap water, lake water and industrial effluents. The method shows wide linear range (2.5⁓100 ng/mL), high sensitivity (detection limit of 0.22 ng/mL even without further concentration after desorption), high accuracies (92.6⁓103.0 %) and good precisions (0.57⁓4.53 %), indicating a great potential of this material and method in the detection of trace or ultratrace BPA in complex environmental water samples.
Collapse
Affiliation(s)
- Qiaolian Cheng
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Yunli Yu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Zihao Wan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Meng Zhou
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Weicheng Tang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Wenfeng Tan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Mingming Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| |
Collapse
|
2
|
Han D, Wang S, Zhao N, Cui Y, Yan H. Fabrication of magnetic hydrophilic imprinted polymers via two-step immobilization approach for targeted detecting bisphenol A. J Chromatogr A 2024; 1728:465032. [PMID: 38815479 DOI: 10.1016/j.chroma.2024.465032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/17/2024] [Accepted: 05/25/2024] [Indexed: 06/01/2024]
Abstract
Molecularly imprinted polymer with water-compatibility for effective separation and enrichment of targeted trace pollutants from complicated matrix has captured extensive attention in terms of their high selectivity and matrix compatibility. This study focuses on modified β-cyclodextrin is used as a hydrophilic functional monomer to develop magnetic molecularly imprinted polymers (MMIPs). MMIPs were prepared using Fe3O4 nanoparticles as carriers and bisphenol A (BPA) as templates using a two-step fixation strategy and surface imprinting technology. The structural characteristic and binding properties of the prepared MMIPs were thoroughly studied. The MMIPs exhibited high crystallinity, high adsorption capacity, fast rebinding rate, remarkable selectivity and distinguish reusability. In addition, through magnetic solid-phase extraction separation technology and high-performance liquid chromatography ultraviolet quantitative detection technology, MMIPs are used for selective enrichment and detection of BPA in complex media such as environmental water and milk. This work provides a new route to construct the hydrophilic molecularly imprinted materials and a new sight on developing more effective sample pretreatment strategies for monitoring targeted pollution in complicated aqueous media.
Collapse
Affiliation(s)
- Dandan Han
- Hebei Key Laboratory of Public Health Safety, School of Life Sciences, College of Public Health, Hebei University, Baoding 071002, China
| | - Shenghui Wang
- Hebei Key Laboratory of Public Health Safety, School of Life Sciences, College of Public Health, Hebei University, Baoding 071002, China
| | - Niao Zhao
- Hebei Key Laboratory of Public Health Safety, School of Life Sciences, College of Public Health, Hebei University, Baoding 071002, China
| | - Yahan Cui
- Hebei Key Laboratory of Public Health Safety, School of Life Sciences, College of Public Health, Hebei University, Baoding 071002, China.
| | - Hongyuan Yan
- Hebei Key Laboratory of Public Health Safety, School of Life Sciences, College of Public Health, Hebei University, Baoding 071002, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China.
| |
Collapse
|
3
|
Ali Z, Sajid M, Manzoor S, Ahmad MM, Khan MI, Elboughdiri N, Kashif M, Shanableh A, Rajhi W, Mersni W, Bayraktar E, Salem SB. Biodegradable Magnetic Molecularly Imprinted Anticancer Drug Carrier for the Targeted Delivery of Docetaxel. ACS OMEGA 2022; 7:28516-28524. [PMID: 35990493 PMCID: PMC9386705 DOI: 10.1021/acsomega.2c03299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/22/2022] [Indexed: 05/07/2023]
Abstract
Molecularly imprinted biodegradable polymers are receiving considerable attention in drug delivery due to their ability of targeted recognition and biocompatibility. This study reports the synthesis of a novel fluorescence-active magnetic molecularly imprinted drug carrier (MIDC) using a glucose-based biodegradable cross-linking agent for the delivery of anticancer drug docetaxel. The magnetic molecularly imprinted polymer (MMIP) was characterized through scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction spectroscopy, and vibrating sample magnetometry (VSM). The MMIP presented a magnetization value of 0.0059 emu g-1 and binding capacity of 72 mg g-1 with docetaxel. In vitro and in vivo studies were performed to observe the effectiveness of the MIDC for drug delivery. The cell viability assay suggested that the MMIP did not present toxic effects on healthy cells. The magnetic property of the MMIP allowed quick identification of the drug carrier at the target site by applying the external magnetic field to mice (after 20 min of loading) and taking X-ray images. The novel MMIP-based drug carrier could thus deliver the drug at the target site without affecting the healthy cells.
Collapse
Affiliation(s)
- Zeeshan Ali
- Institute
of Chemical Sciences, Bahauddin Zakariya
University, Multan 60000, Pakistan
| | - Muhammad Sajid
- Institute
of Chemical Sciences, Bahauddin Zakariya
University, Multan 60000, Pakistan
- . Tel.: 00923040801998
| | - Suryyia Manzoor
- Institute
of Chemical Sciences, Bahauddin Zakariya
University, Multan 60000, Pakistan
| | | | - Muhammad Imran Khan
- Research
Institute of Sciences and Engineering (RISE), University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Noureddine Elboughdiri
- Chemical
Engineering Process Department, National
School of Engineers Gabes, University of Gabes, Gabes 6011, Tunisia
- . Tel.: 00966549571015
| | - Muhammad Kashif
- Department
of Chemistry, Emerson University, Multan 60000, Pakistan
| | - Abdallah Shanableh
- Research
Institute of Sciences and Engineering (RISE), University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Wajdi Rajhi
- Mechanical
Engineering Department, College of Engineering,
University of Ha’il, P.O. Box 2440, Ha’il 81441,Saudi Arabia
| | - Wael Mersni
- National
School of Engineers of Tunis, University
of Tunis El Manar, Tunis 1068, Tunisia
| | - Emin Bayraktar
- School
of Mechanical and Manufacturing Engineering, ISAE-SUPMECA Institute
of Mechanics of Paris, Saint-Ouen 93400, France
| | - Sahbi Ben Salem
- National
School of Engineers of Tunis, University
of Tunis El Manar, Tunis 1068, Tunisia
| |
Collapse
|
4
|
Zhao N, Liu K, He C, Zhao D, Zhu L, Zhao C, Zhang W, Oh WD, Zhang W, Qiu R. H 3PO 4 activation mediated the iron phase transformation and enhanced the removal of bisphenol A on iron carbide-loaded activated biochar. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 300:118965. [PMID: 35134429 DOI: 10.1016/j.envpol.2022.118965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/30/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Zero valent iron-loaded biochar (Fe0-BC) has shown promise for the removal of various organic pollutants, but is restricted by reduced specific surface area, low utilization efficiency and limited production of reactive oxygen species (ROS). In this study, iron carbide-loaded activated biochar (Fe3C-AB) with a high surface area was synthesized through the pyrolysis of H3PO4 activated biochar with Fe(NO3)3, tested for removing bisphenol A (BPA) and elucidated the adsorption and degradation mechanisms. As a result, H3PO4 activated biochar was beneficial for the transformation of Fe0 to Fe3C. Fe3C-AB exhibited a significantly higher removal rate and removal capacity for BPA than that of Fe0-BC within a wide pH range of 5.0-11.0, and its performance was maintained even under extremely high salinity and different water sources. Moreover, X-ray photoelectron spectra and density functional theory calculations confirmed that hydrogen bonds were formed between the COOH groups and BPA. 1O2 was the major reactive species, constituting 37.0% of the removal efficiency in the degradation of BPA by Fe3C-AB. Density functional reactivity theory showed that degradation pathway 2 of BPA was preferentially attacked by ROS. Thus, Fe3C-AB with low cost and excellent recycling performance could be an alternative candidate for the efficient removal of contaminants.
Collapse
Affiliation(s)
- Nan Zhao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China; Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Kunyuan Liu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Chao He
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Dongye Zhao
- Department of Civil & Environmental Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Ling Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Chuanfang Zhao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Weihua Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China; Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Wen-Da Oh
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Weixian Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, PR China
| | - Rongliang Qiu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, PR China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China.
| |
Collapse
|
5
|
Tarafdar A, Sirohi R, Balakumaran PA, Reshmy R, Madhavan A, Sindhu R, Binod P, Kumar Y, Kumar D, Sim SJ. The hazardous threat of Bisphenol A: Toxicity, detection and remediation. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127097. [PMID: 34488101 DOI: 10.1016/j.jhazmat.2021.127097] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/23/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Bisphenol A (or BPA) is a toxic endocrine disrupting chemical that is released into the environment through modern manufacturing practices. BPA can disrupt the production, function and activity of endogenous hormones causing irregularity in the hypothalamus-pituitary-gonadal glands and also the pituitary-adrenal function. BPA has immuno-suppression activity and can downregulate T cells and antioxidant genes. The genotoxicity and cytotoxicity of BPA is paramount and therefore, there is an immediate need to properly detect and remediate its influence. In this review, we discuss the toxic effects of BPA on different metabolic systems in the human body, followed by its mechanism of action. Various novel detection techniques (LC-MS, GC-MS, capillary electrophoresis, immunoassay and sensors) involving a pretreatment step (liquid-liquid microextraction and molecularly imprinted solid-phase extraction) have also been detailed. Mechanisms of various remediation strategies, including biodegradation using native enzymes, membrane separation processes, photocatalytic oxidation, use of nanosorbents and thermal degradation has been detailed. An overview of the global regulations pertaining to BPA has been presented. More investigations are required on the efficiency of integrated remediation technologies rather than standalone methods for BPA removal. The effect of processing operations on BPA in food matrices is also warranted to restrict its transport into food products.
Collapse
Affiliation(s)
- Ayon Tarafdar
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Ranjna Sirohi
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Palanisamy Athiyaman Balakumaran
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695019, Kerala, India
| | - R Reshmy
- Department of Chemistry, Bishop Moore College, Mavelikkara 690110, Kerela, India
| | - Aravind Madhavan
- Rajiv Gandhi Centre for Biotechnology, Trivandrum 695014, Kerela, India
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695019, Kerala, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695019, Kerala, India
| | - Yogesh Kumar
- Department of Food Science and Technology, National Institute of Food Technology and Entrepreneurship and Management, Sonipat 131028, Haryana, India
| | - Deepak Kumar
- Department of Food Science and Technology, National Institute of Food Technology and Entrepreneurship and Management, Sonipat 131028, Haryana, India
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, South Korea.
| |
Collapse
|
6
|
Yu M, Li H, Xie J, Xu Y, Lu X. A descriptive and comparative analysis on the adsorption of PPCPs by molecularly imprinted polymers. Talanta 2022; 236:122875. [PMID: 34635255 DOI: 10.1016/j.talanta.2021.122875] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/24/2021] [Accepted: 09/09/2021] [Indexed: 12/27/2022]
Abstract
Molecularly imprinted polymers (MIPs) have aroused great attention as a new material for the removal or detection of pharmaceuticals and personal care products (PPCPs). However, it is not clear about the superiority and deficiency of MIPs in the process of removing or detecting PPCPs. Herein, we evaluated the performance of MIPs in the aspects of adsorption capacity, binding affinity, adsorption rate, and compatibility to other techniques, and proposed ways to improve its performance. Without regard to the selectivity of MIPs, for the PPCPs adsorption, MIPs surprisingly did not always perform better than the conventional adsorbents (non-imprinted polymers, biochar, activated carbon and resin), indicating that MIPs should be used where selectivity is crucial, for example recovery of specific PPCPs in an environmental sample extraction process. Compared to the traditional solid-phase extraction for PPCPs detection pretreatment, the usage of MIPs as substitute extraction agents could obtain high selectivity of specific substance, due to the uniformity and effectiveness of the specific sites. A promising development in the future would be to combine other simple and rapid quantitative technologies, such as electro/photochemical sensor and catalytic degradation, to realize rapid and sensitive detection of trace PPCPs.
Collapse
Affiliation(s)
- Miaomiao Yu
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution and Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Haixiao Li
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution and Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Jingyi Xie
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution and Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yan Xu
- Department of Soils and Agri-Food Engineering, Paul Comtois Bldg., Laval University, Quebec City, QC, G1K 7P4, Canada
| | - Xueqiang Lu
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution and Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
7
|
Supramolecular imprinted polymeric stir bar sorptive extraction followed by high-performance liquid chromatography for endocrine disruptor compounds analysis. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105163] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
8
|
Huelsmann RD, Will C, Carasek E. Determination of bisphenol A: Old problem, recent creative solutions based on novel materials. J Sep Sci 2020; 44:1148-1173. [PMID: 33006433 DOI: 10.1002/jssc.202000923] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/29/2020] [Accepted: 09/29/2020] [Indexed: 01/03/2023]
Abstract
Bisphenol A is a synthetic compound widely used in industry, in the production of polycarbonate, epoxy resins, and thermal paper, among others. Its annual production is estimated at millions of tons per year, demonstrating its importance. Despite its wide application in various everyday products, once in the environment (due to its disposal or leaching), it has high toxicity to humans and animal life, and this problem has been well known for years. Given this problem, many researchers seek alternatives for its monitoring in matrices such as natural water, waste, food, and biological matrices. For this, new advanced materials have been developed, characterized, and applied in creative ways for the preparation of samples for the determination of bisphenol A. This article aims to present some of these important and recent applications, describing the use of molecularly imprinted polymers, metal and covalent organic frameworks, ionic liquids and magnetic ionic liquids, and deep eutectic solvents as creative solutions in sample preparation for the long-standing problem of bisphenol A determination.
Collapse
Affiliation(s)
| | - Camila Will
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Eduardo Carasek
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
9
|
Azizi A, Bottaro CS. A critical review of molecularly imprinted polymers for the analysis of organic pollutants in environmental water samples. J Chromatogr A 2020; 1614:460603. [DOI: 10.1016/j.chroma.2019.460603] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 01/05/2023]
|
10
|
Endocrine disrupting effects of bisphenol A exposure and recent advances on its removal by water treatment systems. A review. SCIENTIFIC AFRICAN 2019. [DOI: 10.1016/j.sciaf.2019.e00135] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
11
|
Li WK, Shi YP. Recent advances and applications of carbon nanotubes based composites in magnetic solid-phase extraction. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.06.039] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
12
|
Determination of bisphenol A in tea samples by solid phase extraction and liquid chromatography coupled to mass spectrometry. Microchem J 2019. [DOI: 10.1016/j.microc.2019.03.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Liu P, Ren Y, Ma J, Zhang Z, Song H, Yang T, Luo L, Wang X. Two different states conversion mechanism of the imprinting sites. J Colloid Interface Sci 2019; 539:235-244. [PMID: 30583203 DOI: 10.1016/j.jcis.2018.12.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 12/08/2018] [Accepted: 12/15/2018] [Indexed: 11/18/2022]
Abstract
Bisphenol A molecular imprinted adsorbent (BMIA) was successfully synthesized by a sol-gel process and showed a good specific binding performance in the water. The further studies showed that the mass transfer process was controlled by in-diffusion, and the synthesis conditions would effect on the amount of imprinting sites. Scatchard model analysis evidenced that the high binding affinity sites and the low binding affinity sites were both on BMIA, and the high binding affinity sites played a key role in the specific binding process. Scatchard model analysis of temperature effect experiments and dosage effect experiments proved that the specific binding sites with high binding affinity and the unexpressed specific binding sites with low binding affinity were the two different states of the imprinting binding sites. The conversion between the two different states depended on the reaction driving force, and the increasing reaction driving force would increase the number of specific binding sites. Especially, the temperature showed a linear positive correlation with the amount of specific binding sites. Finally, a possible model was put forward to explain the two different states conversion mechanism of the imprinting sites.
Collapse
Affiliation(s)
- Pingxin Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Yueming Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Zhongxiang Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Haoran Song
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Tao Yang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Lisha Luo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xiaowen Wang
- Yantai No.2 Middle School of Shandong Province, Yantai, Shandong 264003, PR China
| |
Collapse
|
14
|
Preparation of magnetic molecularly imprinted polymers with double functional monomers for the extraction and detection of chloramphenicol in food. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1100-1101:113-121. [DOI: 10.1016/j.jchromb.2018.09.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/31/2018] [Accepted: 09/30/2018] [Indexed: 01/16/2023]
|
15
|
Dong S, Lou Q, Huang G, Guo J, Wang X, Huang T. Dispersive solid-phase extraction based on MoS2/carbon dot composite combined with HPLC to determine brominated flame retardants in water. Anal Bioanal Chem 2018; 410:7337-7346. [DOI: 10.1007/s00216-018-1342-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/08/2018] [Accepted: 08/27/2018] [Indexed: 10/28/2022]
|
16
|
Keçili R, Hussain CM. Recent Progress of Imprinted Nanomaterials in Analytical Chemistry. Int J Anal Chem 2018; 2018:8503853. [PMID: 30057612 PMCID: PMC6051082 DOI: 10.1155/2018/8503853] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/03/2018] [Indexed: 11/17/2022] Open
Abstract
Molecularly imprinted polymers (MIPs) are a type of tailor-made materials that have ability to selectively recognize the target compound/s. MIPs have gained significant research interest in solid-phase extraction, catalysis, and sensor applications due to their unique properties such as low cost, robustness, and high selectivity. In addition, MIPs can be prepared as composite nanomaterials using nanoparticles, multiwalled carbon nanotubes (MWCNTs), nanorods, quantum dots (QDs), graphene, and clays. This review paper aims to demonstrate and highlight the recent progress of the applications of imprinted nanocomposite materials in analytical chemistry.
Collapse
Affiliation(s)
- Rüstem Keçili
- Anadolu University, Yunus Emre Vocational School of Health Services, Department of Medical Services and Techniques, 26470 Eskişehir, Turkey
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, N J 07102, USA
| |
Collapse
|
17
|
Design of a hyper-crosslinked β-cyclodextrin porous polymer for highly efficient removal toward bisphenol a from water. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2017.12.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Sedghi R, Yassari M, Heidari B. Thermo-responsive molecularly imprinted polymer containing magnetic nanoparticles: Synthesis, characterization and adsorption properties for curcumin. Colloids Surf B Biointerfaces 2017; 162:154-162. [PMID: 29190466 DOI: 10.1016/j.colsurfb.2017.11.053] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/12/2017] [Accepted: 11/21/2017] [Indexed: 01/30/2023]
Abstract
A novel intelligent thermoresponsive-magnetic molecularly imprinted polymer (TMMIP) nanocomposite based on N-isopropylacrylamide (NIPAM) & Fe3O4 was designed for the controlled & sustained release of Curcumin (CUR) with the ability to response external stimulus. The TMMIP nanocomposite was prepared using acryl functionalized β-cyclodextrin (β-CD) and NIPAM as functional monomers and CUR as target molecule. The recognition cavities which caused by host-guest interactions had direct influence to enhanced drug loading and sustained release of CUR. According to in-vitro release experiment in two different temperatures (below & above LCST of NIPAM) the prolonged & controlled release of CUR were observed. The release rate could be controlled by changing the temperature because of the phase transition behavior of NIPAM monomer. Also, the proposed biosensor displayed effective role in separation science, reasonable adsorption capacity (77mgg-1), fast recognition (10min equilibration), selective extraction toward CUR in the presence of structural analogues and easily separation using external magnetic field. Moreover, the synthesized TMMIP was confirmed by various characterization.
Collapse
Affiliation(s)
- Roya Sedghi
- Department of Polymer & Materials Chemistry, Faculty of Chemistry & Petroleum Sciences, Shahid Beheshti University, G.C, 1983969411, Tehran, Iran.
| | - Mehrasa Yassari
- Department of Polymer & Materials Chemistry, Faculty of Chemistry & Petroleum Sciences, Shahid Beheshti University, G.C, 1983969411, Tehran, Iran
| | - Bahareh Heidari
- Department of Polymer & Materials Chemistry, Faculty of Chemistry & Petroleum Sciences, Shahid Beheshti University, G.C, 1983969411, Tehran, Iran
| |
Collapse
|
19
|
Pérez-Fernández V, Mainero Rocca L, Tomai P, Fanali S, Gentili A. Recent advancements and future trends in environmental analysis: Sample preparation, liquid chromatography and mass spectrometry. Anal Chim Acta 2017; 983:9-41. [DOI: 10.1016/j.aca.2017.06.029] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 05/30/2017] [Accepted: 06/01/2017] [Indexed: 02/06/2023]
|
20
|
Ansari S. Combination of molecularly imprinted polymers and carbon nanomaterials as a versatile biosensing tool in sample analysis: Recent applications and challenges. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.05.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Sedghi R, Heidari B, Yassari M. Novel molecularly imprinted polymer based on β-cyclodextrin@graphene oxide: Synthesis and application for selective diphenylamine determination. J Colloid Interface Sci 2017; 503:47-56. [PMID: 28500939 DOI: 10.1016/j.jcis.2017.05.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 04/30/2017] [Accepted: 05/05/2017] [Indexed: 11/26/2022]
Abstract
A sensitive and selective molecularly imprinted polymer (MIP) for the determination of diphenylamine (DPA) was developed based on host-guest interactions of a cyclodextrin-based polymer which possesses an inherent affinity for the target. The proposed GO@MIP has been prepared using the graphene oxide (GO) sheets as surface of polymerization, DPA as target molecule, β-cyclodextrin (β-CD) and acrylamide (AM) as functional monomers, azobisisobutyronitrile (AIBN) as initiator and N, N methylene bisacrylamide (MBAm) as crosslinker which denoted as GO@MIP nanocomposite. The MIP sites were formed by the inclusion complex through interaction of DPA and β-CD, followed by extraction of target. The resulting GO@MIP nanocomposite possess a fast adsorption kinetics, highly improved imprinting effect, high adsorption capacity, and it can be applied to fast extraction of DPA. The resultant GO@MIP nanocomposite was characterized using the Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA) scanning electron microscope (SEM) and energy-dispersive spectroscopy (EDS) analysis. On the other hand, the non-imprinted polymer (GO@NIP nanocomposite) has been synthesized and was used in the adsorption experiments. The MIP exhibited good affinity with a maximum adsorption capacity of 95.98mgg-1 and excellent selectivity toward DPA than other structural analogues such as 2-amino benzophenone and dithizone.
Collapse
Affiliation(s)
- Roya Sedghi
- Department of Polymer & Materials Chemistry, Faculty of Chemistry & Petroleum Sciences, Shahid Beheshti University, G.C, 1983969411 Tehran, Iran.
| | - Bahareh Heidari
- Department of Polymer & Materials Chemistry, Faculty of Chemistry & Petroleum Sciences, Shahid Beheshti University, G.C, 1983969411 Tehran, Iran
| | - Mehrasa Yassari
- Department of Polymer & Materials Chemistry, Faculty of Chemistry & Petroleum Sciences, Shahid Beheshti University, G.C, 1983969411 Tehran, Iran
| |
Collapse
|
22
|
Ansari S. Application of magnetic molecularly imprinted polymer as a versatile and highly selective tool in food and environmental analysis: Recent developments and trends. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.03.001] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
23
|
Bhatnagar A, Anastopoulos I. Adsorptive removal of bisphenol A (BPA) from aqueous solution: A review. CHEMOSPHERE 2017; 168:885-902. [PMID: 27839878 DOI: 10.1016/j.chemosphere.2016.10.121] [Citation(s) in RCA: 239] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/16/2016] [Accepted: 10/29/2016] [Indexed: 05/15/2023]
Abstract
Endocrine-disrupting compounds (EDCs) are an important class of emerging contaminants that have been detected (and are still being detected) in aquatic environments such as surface waters, groundwater, wastewater, runoff, and landfill leachates. Bisphenol A (BPA) is a known endocrine disruptor that is acutely toxic to the living organisms. BPA has been widely used in the manufacture of sunscreen lotions, nail polish, body wash/lotions, bar soaps, shampoo, conditioners, shaving creams, and face lotions/cleanser, besides its other industrial applications. In the present review, an overview of the recent research studies dealing with the BPA removal from water by adsorption method is presented. We have reviewed various conventional and non-conventional adsorbents which have been used for BPA removal from water. It is evident from the literature reviewed that modified adsorbents and composite materials have shown promising results for BPA removal from water. Literature has been extensively discussed in terms of adsorption capacities, fitted isotherm and kinetic models and thermodynamic aspects.
Collapse
Affiliation(s)
- Amit Bhatnagar
- Department of Environmental and Biological Sciences, University of Eastern Finland, FI-70211, Kuopio, Finland.
| | - Ioannis Anastopoulos
- Laboratory of Soils and Agricultural Chemistry, Department of Natural Resources and Agricultural Engineering, Agricultural University of Athens, Athens, GR-11855, Greece
| |
Collapse
|
24
|
Wu X, Li Y, Zhu X, He C, Wang Q, Liu S. Dummy molecularly imprinted magnetic nanoparticles for dispersive solid-phase extraction and determination of bisphenol A in water samples and orange juice. Talanta 2017; 162:57-64. [DOI: 10.1016/j.talanta.2016.10.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/17/2016] [Accepted: 10/02/2016] [Indexed: 10/20/2022]
|
25
|
Sun F, Kang L, Xiang X, Li H, Luo X, Luo R, Lu C, Peng X. Recent advances and progress in the detection of bisphenol A. Anal Bioanal Chem 2016; 408:6913-27. [PMID: 27485626 DOI: 10.1007/s00216-016-9791-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/27/2016] [Accepted: 07/12/2016] [Indexed: 01/01/2023]
Abstract
Bisphenol A (BPA) is an important industrial chemical used as a plasticizer in polycarbonate and epoxy resins in the plastic and paper industries. Because of its estrogenic properties, BPA has attracted increasing attention from many researchers. This review focuses primarily on analytical methods for BPA detection that have emerged in recent years. We present and discuss the advantages and disadvantages of sample preparation techniques (e.g., solvent extraction, solid-phase extraction, molecularly imprinted polymer solid-phase extraction, and micro-extraction techniques) and analytical methods (e.g., liquid chromatography, liquid chromatography-mass spectrometry, gas chromatography-mass spectrometry, capillary electrophoresis, immunoassay, and several novel sensors). We also discuss expected future developments for the detection of BPA. Graphical Abstract This review focuses primarily on the recent development in the detection of bisphenol A including sample pre-treatment and analytical methods.
Collapse
Affiliation(s)
- Fengxia Sun
- Analysis and Testing Center, Xinjiang Academy of Agriculture and Reclamation Science, Shihezi, Xinjiang, 832000, China.,State Key Laboratory of Sheep Genetic Improvement & Healthy Breeding, Xinjiang Academy of Agriculture and Reclamation Science, Shihezi, Xinjiang, 832000, China
| | - Lichao Kang
- Analysis and Testing Center, Xinjiang Academy of Agriculture and Reclamation Science, Shihezi, Xinjiang, 832000, China
| | - Xiaoli Xiang
- Analysis and Testing Center, Xinjiang Academy of Agriculture and Reclamation Science, Shihezi, Xinjiang, 832000, China
| | - Hongmin Li
- Analysis and Testing Center, Xinjiang Academy of Agriculture and Reclamation Science, Shihezi, Xinjiang, 832000, China
| | - Xiaoling Luo
- Analysis and Testing Center, Xinjiang Academy of Agriculture and Reclamation Science, Shihezi, Xinjiang, 832000, China.,State Key Laboratory of Sheep Genetic Improvement & Healthy Breeding, Xinjiang Academy of Agriculture and Reclamation Science, Shihezi, Xinjiang, 832000, China
| | - Ruifeng Luo
- Analysis and Testing Center, Xinjiang Academy of Agriculture and Reclamation Science, Shihezi, Xinjiang, 832000, China
| | - Chunxia Lu
- Analysis and Testing Center, Xinjiang Academy of Agriculture and Reclamation Science, Shihezi, Xinjiang, 832000, China
| | - Xiayu Peng
- State Key Laboratory of Sheep Genetic Improvement & Healthy Breeding, Xinjiang Academy of Agriculture and Reclamation Science, Shihezi, Xinjiang, 832000, China.
| |
Collapse
|
26
|
Gong T, Zhou Y, Sun L, Liang W, Yang J, Shuang S, Dong C. Effective adsorption of phenolic pollutants from water using β-cyclodextrin polymer functionalized Fe3O4 magnetic nanoparticles. RSC Adv 2016. [DOI: 10.1039/c6ra16383a] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
β-Cyclodextrin polymer functionalized magnetic nanoparticles possess adsorption properties favorable for the purpose of removing phenolic pollutants.
Collapse
Affiliation(s)
- Tao Gong
- Institute of Environmental Sciences
- Department of Chemistry
- Shanxi University
- Taiyuan 030006
- China
| | - Yehong Zhou
- Institute of Environmental Sciences
- Department of Chemistry
- Shanxi University
- Taiyuan 030006
- China
| | - Linlin Sun
- Institute of Environmental Sciences
- Department of Chemistry
- Shanxi University
- Taiyuan 030006
- China
| | - Wenting Liang
- Institute of Environmental Sciences
- Department of Chemistry
- Shanxi University
- Taiyuan 030006
- China
| | - Jun Yang
- Department of Mechanical and Materials Engineering
- University of Western Ontario
- London
- Canada
| | - Shaomin Shuang
- Institute of Environmental Sciences
- Department of Chemistry
- Shanxi University
- Taiyuan 030006
- China
| | - Chuan Dong
- Institute of Environmental Sciences
- Department of Chemistry
- Shanxi University
- Taiyuan 030006
- China
| |
Collapse
|
27
|
Herrero-Latorre C, Barciela-García J, García-Martín S, Peña-Crecente R, Otárola-Jiménez J. Magnetic solid-phase extraction using carbon nanotubes as sorbents: A review. Anal Chim Acta 2015; 892:10-26. [DOI: 10.1016/j.aca.2015.07.046] [Citation(s) in RCA: 243] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/10/2015] [Accepted: 07/16/2015] [Indexed: 11/26/2022]
|