1
|
Truong TT, Huy BT, Huong LTC, Truong HB, Lee YI. Smartphone-based paper strip assay for putrescine and spermidine detection using hybrid organic-inorganic perovskite with Eu 3+ complex. Analyst 2024; 149:2306-2316. [PMID: 38525647 DOI: 10.1039/d4an00219a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
A new method utilizing fluorescent ratiometry is proposed for detecting putrescine and spermidine. The method involves the use of a fluorescent probe comprising a 2D halide perovskite synthesized from octadecylamine-iodine and PbI2via a grinding-sonicating technique, along with a Eu3+-complex. Upon excitation at 290 nm, the probe fluoresces at two distinguishable wavelengths. The addition of putrescine and spermidine significantly decreases the emission of the 2D halide perovskite at 496 nm, while the emission of the Eu3+-complex at 618 nm remains stable. The color changes of the probe depend on the concentration of putrescine and spermidine, and the assay offers linearity over a wide concentration range (30-4000 ng mL-1), a low detection limit (4 ng mL-1 for putrescine, and 7 ng mL-1 for spermidine), and a quick response time. Furthermore, a portable device based on a smartphone can be used to record the color change of the paper test strip using the prepared fluorescent materials. The fluorescence quenching mechanism of the probe is explained as dynamic quenching.
Collapse
Affiliation(s)
- Thi Thuy Truong
- Anastro Laboratory, Institute of Basic Science, Changwon National University, Changwon 51140, Republic of Korea.
| | - Bui The Huy
- Anastro Laboratory, Institute of Basic Science, Changwon National University, Changwon 51140, Republic of Korea.
| | - Le Thi Cam Huong
- Anastro Laboratory, Institute of Basic Science, Changwon National University, Changwon 51140, Republic of Korea.
| | - Hai Bang Truong
- Optical Materials Research Group, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City, Vietnam
- Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Yong-Ill Lee
- Anastro Laboratory, Institute of Basic Science, Changwon National University, Changwon 51140, Republic of Korea.
- Department of Pharmaceutical Sciences, Pharmaceutical Technical University, Tashkent 100084, Uzbekistan
| |
Collapse
|
2
|
Kashyap S, Tehri N, Verma N, Gahlaut A, Hooda V. Recent advances in development of electrochemical biosensors for the detection of biogenic amines. 3 Biotech 2023; 13:2. [PMID: 36506812 PMCID: PMC9729522 DOI: 10.1007/s13205-022-03414-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/26/2022] [Indexed: 12/12/2022] Open
Abstract
Biogenic amines (BAs) are widely found in food as a consequence of diverse factors including free amino acid availability, microbial production of decarboxylases, and variations in processing and storage conditions. Hence, BAs are considered as an important marker for determining the freshness and quality of food. Owing to the documentation of BAs in different dietary products, their numerous negative impacts on human health have reported to be a serious concern in past few decades. Therefore, the quantification of these chemical species in food becomes crucial as it can immensely contributes toward control of new episodes on food intoxication in humans. In this line, various chromatographic and colorimetric methods have been developed to detect BAs. However, these methods are in use from a longer time, still are limited by high cost, lengthy procedures, huge infrastructure and skilled personnel requirements that hinder their on-field application. In pursuit of a reliable method offering accurate detection of BAs, this review presents the state-of-the-art of electrochemical strategies for BAs sensing in food. The core of the review discusses about the widely employed electrochemical transducers, such as amperometric, potentiometric, impedimetric and conductometric-based BAs biosensors with significant findings of research work conducted previously. The application of electrochemical sensors to analyze BAs in different fields including food systems (fermented and non-fermented types) and smart packaging systems has been reviewed. Moreover, existing challenges and further available prospects for the development of rapid, facile, and sensitive electrochemical strategies for on-site determination of BAs have also been discussed.
Collapse
Affiliation(s)
- Sombir Kashyap
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| | - Nimisha Tehri
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| | - Neelam Verma
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| | - Anjum Gahlaut
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| | - Vikas Hooda
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| |
Collapse
|
3
|
Tian HW, Chang YX, Hu XY, Shah MR, Li HB, Guo DS. Supramolecular imaging of spermine in cancer cells. NANOSCALE 2021; 13:15362-15368. [PMID: 34498658 DOI: 10.1039/d1nr04328e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
As an important biomarker, the overexpressed spermine has been widely investigated for cancer diagnosis and treatment. However, bioimaging of spermine in living cells is still a formidable challenge. Herein, we design a supramolecular imaging ensemble for spermine by the host-guest complexation of amphiphilic sulfonatocalix[5]arene (SC5A12C) assembly with lucigenin (LCG). Strong binding ability and complexation-induced fluorescence quenching properties enable SC5A12C to quench the fluorescence of LCG dramatically and to recover it completely due to the competition of overexpressed spermine in cancer cells. SC5A12C also exhibits excellent biocompatibility and promotes cellular uptake due to its ability to form ultra-stable assembly. Co-assembling folate further promotes the cellular uptake of folate receptor overexpressed cancer cells, contributing to enhanced bioimaging.
Collapse
Affiliation(s)
- Han-Wen Tian
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China.
| | - Yu-Xuan Chang
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China.
| | - Xin-Yue Hu
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China.
| | - Muhammad Raza Shah
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi 75270, Pakistan
| | - Hua-Bin Li
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China.
| | - Dong-Sheng Guo
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China.
| |
Collapse
|
4
|
Barros M, López-Carrasco A, Amorós P, Gil S, Gaviña P, Parra M, El Haskouri J, Terencio MC, Costero AM. Chromogenic Chemodosimeter Based on Capped Silica Particles to Detect Spermine and Spermidine. NANOMATERIALS 2021; 11:nano11030818. [PMID: 33806899 PMCID: PMC8004735 DOI: 10.3390/nano11030818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 11/21/2022]
Abstract
A new hybrid organic–inorganic material for sensing spermine (Spm) and spermidine (Spd) has been prepared and characterized. The material is based on MCM-41 particles functionalized with an N-hydroxysuccinimide derivative and loaded with Rhodamine 6G. The cargo is kept inside the porous material due to the formation of a double layer of organic matter. The inner layer is covalently bound to the silica particles, while the external layer is formed through hydrogen and hydrophobic interactions. The limits of detection determined by fluorimetric titration are 27 µM and 45 µM for Spm and Spd, respectively. The sensor remains silent in the presence of other biologically important amines and is able to detect Spm and Spd in both aqueous solution and cells.
Collapse
Affiliation(s)
- Mariana Barros
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitad Politècnica de València, Universitat de València, Doctor Moliner 50, Burjassot, 46100 Valencia, Spain; (M.B.); (A.L.-C.); (S.G.); (P.G.); (M.P.); (M.C.T.)
| | - Alejandro López-Carrasco
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitad Politècnica de València, Universitat de València, Doctor Moliner 50, Burjassot, 46100 Valencia, Spain; (M.B.); (A.L.-C.); (S.G.); (P.G.); (M.P.); (M.C.T.)
| | - Pedro Amorós
- Instituto de Ciencia de Materiales (ICMUV), Universitat de València, P.O. Box 2085, 46071 Valencia, Spain;
- Correspondence: (P.A.); (A.M.C.)
| | - Salvador Gil
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitad Politècnica de València, Universitat de València, Doctor Moliner 50, Burjassot, 46100 Valencia, Spain; (M.B.); (A.L.-C.); (S.G.); (P.G.); (M.P.); (M.C.T.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Pablo Gaviña
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitad Politècnica de València, Universitat de València, Doctor Moliner 50, Burjassot, 46100 Valencia, Spain; (M.B.); (A.L.-C.); (S.G.); (P.G.); (M.P.); (M.C.T.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Margarita Parra
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitad Politècnica de València, Universitat de València, Doctor Moliner 50, Burjassot, 46100 Valencia, Spain; (M.B.); (A.L.-C.); (S.G.); (P.G.); (M.P.); (M.C.T.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Jamal El Haskouri
- Instituto de Ciencia de Materiales (ICMUV), Universitat de València, P.O. Box 2085, 46071 Valencia, Spain;
| | - Maria Carmen Terencio
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitad Politècnica de València, Universitat de València, Doctor Moliner 50, Burjassot, 46100 Valencia, Spain; (M.B.); (A.L.-C.); (S.G.); (P.G.); (M.P.); (M.C.T.)
- Departamento de Farmacología, Universitat de València, Vicente Andrés Estellés S/n, Burjassot, 46100 Valencia, Spain
| | - Ana M. Costero
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitad Politècnica de València, Universitat de València, Doctor Moliner 50, Burjassot, 46100 Valencia, Spain; (M.B.); (A.L.-C.); (S.G.); (P.G.); (M.P.); (M.C.T.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Correspondence: (P.A.); (A.M.C.)
| |
Collapse
|
5
|
Verma N, Hooda V, Gahlaut A, Gothwal A, Hooda V. Enzymatic biosensors for the quantification of biogenic amines: a literature update. Crit Rev Biotechnol 2019; 40:1-14. [DOI: 10.1080/07388551.2019.1680600] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Neelam Verma
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Vinita Hooda
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Anjum Gahlaut
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Ashish Gothwal
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Vikas Hooda
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
6
|
Li J, Huang H, Feng W, Guan R, Zhou L, Cheng H, Ye X. Dynamic Changes in Biogenic Amine Content in the Traditional Brewing Process of Soy Sauce. J Food Prot 2019; 82:1539-1545. [PMID: 31414900 DOI: 10.4315/0362-028x.jfp-19-035] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A high concentration of biogenic amines have been reported to be hazardous for human health. This article is an analytical report on one lot to identify the changes of biogenic amines in each period of soy sauce brewing and clarify the key control point for biogenic amine production. The content of putrescine, cadaverine, spermidine, spermine, tryptamine, phenylethylamine, histamine, serotonin, tyramine, and agmatine was detected in the koji-making and fermenting process. The content of putrescine increased from 27.11 ± 1.05 to 185.86 ± 1.18 mg/kg in the koji-making process, indicating that putrescine is the main biogenic amine produced by microbes in this period. The content of tryptamine increased to the highest value of 581.77 ± 36.38 mg/L on day 24 of the fermenting process and then decreased rapidly to 81.98 ± 0.20 mg/L at the end (day 122). In addition, histamine and tyramine reached the highest values (486.91 ± 24.67 and 180.84 ± 2.32 mg/L, respectively) after 52 days of fermentation, followed by a decrease to 287.24 ± 15.00 and 144.67 ± 3.61 mg/L, respectively, at the end of the fermenting process. The samples were further characterized by the analysis of other indices, including the content of water, salt, soluble saltless solids, crude fat, total acid, amino acid nitrogen, total nitrogen, and ammonium salt. The content of soluble saltless solids decreased from 9.28 ± 0.16 to 5.30 ± 1.40 g/100 g during the first 38 days of fermentation, followed by an increase to 14.68 ± 1.12 g/100 g during the last 84 days. The content of total acid, crude fat, amino acid nitrogen, total nitrogen, and ammonium salt all increased rapidly in the early stage of the fermenting process and then slowed down.
Collapse
Affiliation(s)
- Jia Li
- Life Science College, China Jiliang University, Hangzhou 310018, Zhejiang, People's Republic of China
| | - Haizhi Huang
- Life Science College, China Jiliang University, Hangzhou 310018, Zhejiang, People's Republic of China.,Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, China Jiliang University, Hangzhou 310018, Zhejiang, People's Republic of China
| | - Wei Feng
- Zhejiang Wuweihe Food Co., Ltd., No. 666, Hanghai Road, Deqing County, Huzhou 313213, Zhejiang, People's Republic of China
| | - Rongfa Guan
- Life Science College, China Jiliang University, Hangzhou 310018, Zhejiang, People's Republic of China.,Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, China Jiliang University, Hangzhou 310018, Zhejiang, People's Republic of China
| | - Linan Zhou
- Zhejiang Wuweihe Food Co., Ltd., No. 666, Hanghai Road, Deqing County, Huzhou 313213, Zhejiang, People's Republic of China
| | - Huan Cheng
- School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310029, Zhejiang, People's Republic of China
| | - Xingqian Ye
- School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310029, Zhejiang, People's Republic of China
| |
Collapse
|
7
|
Determination of sulfonated azo dyes in chili powders by MALDI-TOF MS. Anal Bioanal Chem 2019; 411:5833-5843. [DOI: 10.1007/s00216-019-01965-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/23/2019] [Accepted: 06/06/2019] [Indexed: 12/14/2022]
|
8
|
Bhamore JR, Murthy Z, Kailasa SK. Fluorescence turn-off detection of spermine in biofluids using pepsin mediated synthesis of gold nanoclusters as a probe. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.01.132] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Huang YJ, Chang R, Zhu QJ. Synthesis and Characterization of a Molecularly Imprinted Polymer of Spermidine and the Exploration of Its Molecular Recognition Properties. Polymers (Basel) 2018; 10:E1389. [PMID: 30961314 PMCID: PMC6401967 DOI: 10.3390/polym10121389] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 12/08/2018] [Accepted: 12/12/2018] [Indexed: 11/17/2022] Open
Abstract
Spermidine is a functional ingredient that can extend the lifespan of many foods and indicate meat safety. However, its synthesis and enrichment is expensive and complex. To develop an effective separation material that can offer highly selective recognition of spermidine, we first applied non-covalent molecular imprinting technology using methacrylic acid as a functional monomer, azobisisobutyronitrile as an initiator, and ethylene glycol dimethacrylate as a cross-linker. The adsorption properties of the polymers were analyzed using the Scatchard equation, the Lagergren kinetic equation, and the static distribution coefficient. The optimal polymerization molar ratio of the template molecule spermidine to the functional monomer was 1:4, the maximum adsorption amount was 97.75 μmol/g, and the adsorption equilibrium time was 300 min. The selective experiment showed that the interfering substances tyramine and histamine had selectivity factor α values of 2.01 and 1.78, respectively, indicating that the prepared polymer had good spermidine recognition ability. The density function theory calculations showed that the hydrogen bond strength, steric effect, and product energy caused adsorption and separation differences among the different imprinted polymer complexes.
Collapse
Affiliation(s)
- Yu-Jie Huang
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China.
- College of Food Safety, Guizhou Medical University, Guiyang 550025, China.
| | - Rui Chang
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China.
| | - Qiu-Jin Zhu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China.
- Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang, 550025, China.
| |
Collapse
|
10
|
Detection of urinary spermine by using silver-gold/silver chloride nanozymes. Anal Chim Acta 2018; 1009:89-97. [DOI: 10.1016/j.aca.2018.01.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/13/2017] [Accepted: 01/09/2018] [Indexed: 11/19/2022]
|
11
|
Microwave assisted synthesis of tyrosine protected gold nanoparticles for dual (colorimetric and fluorimetric) detection of spermine and spermidine in biological samples. Biosens Bioelectron 2017; 88:71-77. [DOI: 10.1016/j.bios.2016.07.069] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/08/2016] [Accepted: 07/21/2016] [Indexed: 12/20/2022]
|