Li L, Liu R, Liu L, Guo Z, Zhou T, Yang Y, Yang H, He L. Determination of marker residues of quinoxaline-1,4-di-N-oxides and its prototype identification by liquid chromatography tandem mass spectrometry.
Food Chem 2024;
442:138395. [PMID:
38266409 DOI:
10.1016/j.foodchem.2024.138395]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/20/2023] [Accepted: 01/06/2024] [Indexed: 01/26/2024]
Abstract
Quinoxaline-1,4-di-N-oxides (QdNOs), such as carbadox, olaquindox, mequindox, quinocetone, etc. are a class of antibacterial drugs. Prototype drugs residues can not be detected due to their rapid metabolism in animals. Quinoxaline-2-carboxylic acid (QCA) and 3-methyl-QCA (MQCA) are their common marker residues, so it has been always a challenge to trace the specific QdNOs drug used in food animal production. Herein, a liquid chromatography tandem mass spectrometry method was developed to determine QCA and MQCA, and meanwhile, the prototype drugs were identified by analyzing bis-desoxy QdNOs metabolites in single ion-pair monitoring mode. The method indicated that the average recoveries for QCA and MQCA were from 90 % to 105 % with relative standard deviations below 10 %, and the limits of quantification were 1.0 μg/kg. The limits of detection of five bis-desoxy QdNOs (qualitative markers) reached 0.5 μg/kg. This new analytical strategy can effectively solve the identification problem of QdNOs drugs in animal-derived food.
Collapse