1
|
Wu S, Feng Y, Chen S, Zhao Y, Deng J, Wang D. Detection of amino thiols from fish samples by stable isotope chemical labelling coupled with ultra-performance liquid chromatography-tandem mass spectrometry. Food Chem 2025; 471:142728. [PMID: 39764942 DOI: 10.1016/j.foodchem.2024.142728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/15/2024] [Accepted: 12/30/2024] [Indexed: 02/12/2025]
Abstract
The amino thiols are key antioxidants in organisms, and their detection in food is of significant importance. This study developed a new stable isotope chemical labelling coupled with ultra-performance liquid chromatography-tandem mass spectrometry method to detect six amino thiols from fish samples. By the proposed method, amino thiols were labeled after liquid extraction using the stable isotope labeling reagents of iodoacetamide (IAM) and D4-IAM. Desirable recovery and linearity of thiols were achieved in fish samples. The limits of detection (LOD) ranged from 0.2 to 6.5 nmol/g, and the detection sensitivity was improved from 2.6 to 74 folds. The cluster analysis revealed that this method successfully discriminated eight fish species and their sources. Additionally, we found that glutathione and cysteine were significantly correlated with the transportation stress status of golden pompano (Trachinotus ovatus). Overall, this study presents a sensitive and efficient method for the detection of amino thiols from fish samples.
Collapse
Affiliation(s)
- Siyuan Wu
- Key Laboratory of Aquatic product, Ministry of Agriculture and Rural affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510330, China; College of Food Science, Shanghai Ocean University, Shanghai 201306, China
| | - Yang Feng
- Key Laboratory of Aquatic product, Ministry of Agriculture and Rural affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510330, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572426, China.
| | - Shengjun Chen
- Key Laboratory of Aquatic product, Ministry of Agriculture and Rural affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510330, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572426, China; College of Food Science, Shanghai Ocean University, Shanghai 201306, China.
| | - Yongqiang Zhao
- Key Laboratory of Aquatic product, Ministry of Agriculture and Rural affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510330, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572426, China; College of Food Science, Shanghai Ocean University, Shanghai 201306, China
| | - Jianchao Deng
- Key Laboratory of Aquatic product, Ministry of Agriculture and Rural affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510330, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572426, China; College of Food Science, Shanghai Ocean University, Shanghai 201306, China
| | - Di Wang
- Key Laboratory of Aquatic product, Ministry of Agriculture and Rural affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510330, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572426, China
| |
Collapse
|
2
|
Harada M, Kato Y, Tsuji C, Higuchi T, Minami A, Furomitsu S, Arakawa A. Acidic Derivatization of Thiols Using Diethyl 2-Methylenemalonate: Thiol-Michael Addition Click Reaction for Simultaneous Analysis of Cysteine and Cystine in Culture Media Using LC-MS/MS. Anal Chem 2024; 96:6459-6466. [PMID: 38592893 DOI: 10.1021/acs.analchem.4c00700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Cysteine (Cys) and its oxidized form, cystine (Cys2), play crucial roles in biological systems and have considerable applications in cell culture. However, Cys in cell culture media is easily oxidized to Cys2, leading to solubility issues. Traditional analytical methods struggle to maintain the oxidation states of Cys and Cys2 during analysis, posing a significant challenge to accurately measuring and controlling these compounds. To effectively control the Cys and Cys2 levels, a rapid and accurate analytical method is required. Here, we screened derivatizing reagents that can react with Cys even under acidic conditions to realize a novel analytical method for simultaneously determining Cys and Cys2 levels. Diethyl 2-methylenemalonate (EMM) was found to possess the desired traits. EMM, characterized by its dual electron-withdrawing attributes, allowed for a rapid reaction with Cys under acidic conditions, preserving intact information for understanding the functions of target compounds. Combined with LC-MS/MS and an internal standard, this method provided high analytical accuracy in a short analytical time of 9 min. Using the developed method, the rapid oxidation of Cys in cell culture media was observed with the headspace of the storage container considerably influencing Cys oxidation and Cys2 precipitation rates. The developed method enabled the direct and simplified analysis of Cys behavior in practical media samples and could be used in formulating new media compositions, ensuring quality assurance, and real-time analysis of Cys and Cys2 in cell culture supernatants. This novel approach holds the potential to further enhance the media performance by enabling the timely optimal addition of Cys.
Collapse
Affiliation(s)
- Masashi Harada
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-8681, Japan
| | - Yumiko Kato
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-8681, Japan
| | - Chihiro Tsuji
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-8681, Japan
| | - Takuya Higuchi
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-8681, Japan
| | - Ayana Minami
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-8681, Japan
| | - Shunpei Furomitsu
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-8681, Japan
| | - Akihiro Arakawa
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-8681, Japan
| |
Collapse
|
3
|
Langner M, Fröbel D, Helm J, Chavakis T, Peitzsch M, Bechmann N. Accurate redox state indication by in situ derivatization with N-ethylmaleimide - Profiling of transsulfuration and glutathione pathway metabolites by UPLC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1236:124062. [PMID: 38432191 DOI: 10.1016/j.jchromb.2024.124062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Reduced and oxidized glutathione play an important role for the intracellular detoxification of reactive oxygen species. The iron-dependent formation of such reactive oxygen species in conjunction with the inhibition of the redox-balancing enzyme glutathione peroxidase 4 underlie an imbalance in the cellular redox state, thereby resulting in a non-apoptotic form of cell death, defined as ferroptosis, which is relevant in several pathologies. METHODS Here we present a rapid ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) based method providing the accurate quantification of 12 glutathione pathway metabolites after in situ derivatization with N-Ethylmaleimide (NEM). The method was validated regards linearity, recovery and accuracy as well as precision. The assay includes glutathione and its oxidized form glutathione disulfide. Furthermore, the related precursors cysteine, cystine, glutamic acid, γ-glutamylcysteine and cysteinylglycine, biomarkers of protein crosslinking such as cystathionine and lanthionine, as well as metabolites of the transsulfuration pathway, methionine, homocysteine and serine are simultaneously determined. RESULTS Twelve glutathione pathway metabolites were simultaneously analyzed in four different human cell line extracts within a total LC run time of 5.5 min. Interday coefficients of variation (1.7 % to 12.0 %), the mean observed accuracy (100.0 % ± 5.2 %), linear quantification ranges over three orders of magnitude for all analytes and sufficient metabolite stability after NEM-derivatization demonstrate method reliability. Immediate derivatization with NEM at cell harvesting prevents autooxidation of glutathione, ensures accurate results for the GSH/GSSG redox ratio and thereby allows interpretation of cellular redox state. CONCLUSION The described UPLC-MS/MS method provides a sensitive and selective tool for a fast and simultaneous analysis of glutathione pathway metabolites, its direct precursors and related compounds. Assay performance characteristics demonstrate the suitability of the method for applications in different cell cultures. Therefore, by providing glutathione related functional metabolic readouts, the method enables investigations in mechanisms of ferroptosis and alterations in oxidative stress levels in several pathophysiologies.
Collapse
Affiliation(s)
- Mathias Langner
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Dennis Fröbel
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Jana Helm
- Department of Medicine III, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Triantafyllos Chavakis
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Mirko Peitzsch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany.
| | - Nicole Bechmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| |
Collapse
|
4
|
Serafimov K, Aydin Y, Lämmerhofer M. Quantitative analysis of the glutathione pathway cellular metabolites by targeted liquid chromatography-tandem mass spectrometry. J Sep Sci 2024; 47:e2300780. [PMID: 37898873 DOI: 10.1002/jssc.202300780] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 10/30/2023]
Abstract
Glutathione, its biosynthesis intermediates, and other thiol metabolites are of central relevance for the redox homeostasis of cells. Their analysis is critical due to the facile interconversion of redox pairs during sampling, sample preparation, and data acquisition, in particular in the electrospray ionization interface. In this work, we propose a fast-targeted liquid chromatography-tandem mass spectrometry method to accurately analyze 14 metabolites from the glutathione pathway. N-Ethylmaleimide reagent is added with the extraction solvent and instantly stabilizes the thiol-redox state by derivatization. Liquid chromatographic separation of the analytes was performed on a sub-2 μm superficially porous hydrophilic interaction liquid chromatography column with sulfobetaine chemistry. Tandem mass spectrometry with triple-quadrupole mass spectrometry in multiple-reaction monitoring acquisition mode allowed sensitive detection of the targeted metabolites with limits of quantification in the range of 5-25 nM. Run times of 3 min enable a high throughput analysis of cellular samples. For calibration, a 13 C-labelled cell extract was used as an internal standard. The method was validated and the concentrations of glutathione and its biosynthesis intermediates were determined in HeLa cells.
Collapse
Affiliation(s)
- Kristian Serafimov
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Tübingen, Germany
| | - Yüsra Aydin
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Tübingen, Germany
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Tübingen, Germany
| |
Collapse
|
5
|
Gao S, Zhou X, Yue M, Zhu S, Liu Q, Zhao XE. Advances and perspectives in chemical isotope labeling-based mass spectrometry methods for metabolome and exposome analysis. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
6
|
Wang X, Liu J, Zhang K, Yao X, Zhang S. Analysis of mycotoxins in grain samples using 3D covalent organic frameworks and stable isotope labeling technique. J LIQ CHROMATOGR R T 2022. [DOI: 10.1080/10826076.2022.2066689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Xueting Wang
- Shandong Province Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, China
| | - Juping Liu
- Shandong Province Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, China
| | - Kaiyue Zhang
- Shandong Province Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, China
| | - Xin Yao
- Shandong Province Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, China
| | - Shijuan Zhang
- Shandong Province Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, China
| |
Collapse
|
7
|
Qin ZN, Ding J, Yu QW, Qi CB, Wu DM, Zhou P, Feng YQ. Development of C60-based labeling reagents for the determination of low-molecular-weight compounds by matrix assisted laser desorption ionization mass spectrometry (II): Determination of thiols in human serum. Anal Chim Acta 2020; 1105:112-119. [PMID: 32138909 DOI: 10.1016/j.aca.2020.01.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/07/2020] [Accepted: 01/13/2020] [Indexed: 02/07/2023]
Abstract
Perturbation of thiol homeostasis in biological fluids are thought to be associated with several diseases, and reliable analytical methods for the determination of low molecular weight (LMW) thiols in human plasma or serum are thus required. In this study, a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) method is described for high throughput determination of four LMW thiols (glutathione, cysteine, homocysteine and cysteinylglycine) in human serum. It is based on the use of a bromoacetyl functionalized C60 (Br-C60) as a derivatization reagent to label thiols. The Br-C60 labeling can add an 832-Da tag to thiols, which moves thiol signals to high mass region and effectively avoids the signal interference generated by the traditional MALDI matrix below 800 Da. The labeling can be completed within 5 min under microwave-assisted condition. Thereby, the Br-C60 labeling based MALDI-TOF MS analytical method can achieve high throughput analysis of LMW thiols in serum. Good linearities of the method for the thiols in human serum were obtained in the range of 0.5-500.0 μM with correlation coefficient (R) greater than 0.9960. The limit of detection is in the range of 0.07-0.18 μM for the investigated thiols in human serum with relative standard deviations of lower than 13.5% and recoveries ranging from 81.9 to 117.1%. Using the method, four thiols in microliter serum samples of breast cancer (BC) patients were determined. The result showed that the contents of the four thiols in BC serum samples significantly changed compared to the healthy control (HC).
Collapse
Affiliation(s)
- Zhang-Na Qin
- Department of Chemistry, Wuhan University, Wuhan, 430072, PR China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, PR China
| | - Jun Ding
- Department of Chemistry, Wuhan University, Wuhan, 430072, PR China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, PR China
| | - Qiong-Wei Yu
- Department of Chemistry, Wuhan University, Wuhan, 430072, PR China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, PR China
| | - Chu-Bo Qi
- Department of Pathology, Hubei Cancer Hospital, Wuhan, 430079, PR China
| | - Dong-Mei Wu
- Department of Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China
| | - Ping Zhou
- Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Yu-Qi Feng
- Department of Chemistry, Wuhan University, Wuhan, 430072, PR China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, PR China.
| |
Collapse
|
8
|
Luo D, Fang Z, Zhao X, Ma Y, Ye J, Chu Q. Salt-effect enhanced hollow-fiber liquid-phase microextraction of glutathione in human saliva followed by miniaturized capillary electrophoresis with amperometric detection. Electrophoresis 2020; 41:328-334. [PMID: 31884689 DOI: 10.1002/elps.201900390] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 12/19/2022]
Abstract
A hollow-fiber liquid-phase microextraction (HF-LPME) method was established for purification and enrichment of glutathione (GSH) in human saliva followed by a miniaturized capillary electrophoresis with amperometric detection system (mini-CE-AD). Based on regulating isoelectric point and increasing salt effect to modify donor phase, HF-LPME could provide high enrichment efficiency for GSH up to 471 times, and the extract was directly injected for mini-CE-AD analysis. The salt-effect enhanced HF-LPME/mini-CE-AD method has been successfully applied to saliva analysis, and acceptable LOD (0.46 ng/mL, S/N = 3) and recoveries (92.7-101.3%) could be obtained in saliva matrix. The sample pretreatment of this developed method was simple and required no derivatization, providing a potential alternative for non-invasive fluid analysis using portable instrument.
Collapse
Affiliation(s)
- Dan Luo
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, P. R. China
| | - Zhonghui Fang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, P. R. China
| | - Xiaoshuang Zhao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, P. R. China
| | - Yaolu Ma
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, P. R. China
| | - Jiannong Ye
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, P. R. China
| | - Qingcui Chu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, P. R. China
| |
Collapse
|
9
|
He K, Wang YL, Zhu QF, Cheng LM, Feng YQ. Profiling thiol metabolites in myocardial infarction human serum by stable isotope labeling assisted liquid chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1126-1127:121738. [PMID: 31377566 DOI: 10.1016/j.jchromb.2019.121738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 01/18/2023]
Abstract
Myocardial Infarction (MI) is one of the most common causes of deaths worldwide. Thiols have been reported to play a key role in physiological and pathological processes of MI. Comprehensive analysis of thiols would be conducive to fully elucidate the relation between thiols and MI. In the current study, we analyze the metabolomic differences of thiols in serum between MI patients (n = 30) and healthy controls (HCs, n = 30) by stable isotope labeling-dispersive solid phase extraction-liquid chromatography-full scan-Orbitrap-mass spectrometry analysis (IL-DSPE-LC-full scan-Orbitrap MS) method. We detected 300 potential thiols in serum of MI patients and HCs, among which, 67 thiols were positively or putatively identified. Furthermore, we found that the levels of 71 thiols in serum exhibited significant difference between MI patients and HCs. In the transsulfuration pathway, we observed that Cys and Hcys were upregulated, while GSH were downregulated. Our results provide a comprehensive understanding of thiols metabolome in human serum between MI patients and HCs.
Collapse
Affiliation(s)
- Ke He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Ya-Lan Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Quan-Fei Zhu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Li-Ming Cheng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Yu-Qi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, PR China.
| |
Collapse
|
10
|
Quantitation of free and total N-acetylcysteine amide and its metabolite N-acetylcysteine in human plasma using derivatization and electrospray LC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1109:25-36. [DOI: 10.1016/j.jchromb.2019.01.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/22/2019] [Accepted: 01/22/2019] [Indexed: 11/18/2022]
|