1
|
Krieger CC, Neumann S, Sui X, Templin JS, Kapri T, Demillo VG, Olsen RK, Intasiri A, Gershengorn MC, Bell TW. Inhibition of TSH Receptor Expression by a Cyclotriazadisulfonamide as a Potential Treatment of Graves Hyperthyroidism. Endocrinology 2025; 166:bqaf037. [PMID: 39964853 DOI: 10.1210/endocr/bqaf037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/11/2025] [Accepted: 02/15/2025] [Indexed: 02/20/2025]
Abstract
Graves hyperthyroidism (GH) is a condition in which autoantibodies chronically activate the thyrotropin (TSH) receptor (TSHR). TSHR is one of the few G protein-coupled receptors (GPCRs) predicted to have a signal peptide, making it a potential target for cyclotriazadisulfonamide (CADA) compounds. We sought to determine whether a small-molecule drug that selectively induces nascent protein degradation could decrease TSHR expression in vitro and in vivo at therapeutically relevant levels. We tested several CADA compounds for their ability to reduce TSHR surface expression in HEK 293 cells overexpressing human TSHR (HEK-TSHR cells) using flow cytometry. Inhibition of downstream cAMP production and thyroglobulin (Tg) secretion were measured in HEK-TSHR and human thyrocytes, respectively. Follow-up studies in VGD040-treated BALB/c mice assessed plasma levels of free T4 in response to TSH stimulation. Among a number of CADA analogues, VGD040 decreased TSHR at the surface of HEK-TSHR cells. VGD040 was found to be selective toward TSHR compared to similar glycoprotein hormone receptors. In human thyrocytes, reduction of TSHR surface expression by VGD040 decreased cyclic adenosine monophosphate production and Tg secretion. Most important, VGD040 decreased TH secretion in mice without apparent toxicity at the effective dose studied. VGD040 is an important new lead with potential for developing safe drug treatments for GH.
Collapse
Affiliation(s)
- Christine C Krieger
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Susanne Neumann
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiangliang Sui
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jay Scott Templin
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Topprasad Kapri
- Department of Chemistry, University of Nevada, Reno, NV 89557-0216, USA
| | - Violeta G Demillo
- Department of Chemistry, University of Nevada, Reno, NV 89557-0216, USA
| | - Ryan K Olsen
- Department of Chemistry, University of Nevada, Reno, NV 89557-0216, USA
| | - Amarawan Intasiri
- Department of Chemistry, University of Nevada, Reno, NV 89557-0216, USA
| | - Marvin C Gershengorn
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Thomas W Bell
- Department of Chemistry, University of Nevada, Reno, NV 89557-0216, USA
| |
Collapse
|
2
|
Bartnik M, Sławińska-Brych A, Mizerska-Kowalska M, Kania AK, Zdzisińska B. Quantitative Analysis of Isopimpinellin from Ammi majus L. Fruits and Evaluation of Its Biological Effect on Selected Human Tumor Cells. Molecules 2024; 29:2874. [PMID: 38930940 PMCID: PMC11206288 DOI: 10.3390/molecules29122874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Ammi majus L. (Apiaceae) is a medicinal plant with a well-documented history in phytotherapy. The aim of the present work was to isolate isopimpinellin (5,8-methoxypsoralen; IsoP) from the fruit of this plant and evaluate its biological activity against selected tumor cell lines. The methanol extract obtained with the use of an accelerated solvent extraction (ASE) method was the most suitable for the quantitative analysis of coumarins in the A. majus fruit matrix. The coumarin content was estimated by RP-HPLC/DAD, and the amount of IsoP was found to be 404.14 mg/100 g dry wt., constituting 24.56% of the total coumarin fraction (1.65 g/100 g). This, along with the presence of xanthotoxin (368.04 mg/100 g, 22.36%) and bergapten (253.05 mg/100 g, 15.38%), confirmed A. majus fruits as an excellent source of these compounds. IsoP was isolated (99.8% purity) by combined liquid chromatography/centrifugal partition chromatography (LC/CPC) and tested for the first time on its antiproliferative activity against human colorectal adenocarcinoma (HT29, SW620), osteosarcoma (Saos-2, HOS), and multiple myeloma (RPMI8226, U266) cell lines. MTT assay results (96 h incubation) demonstrated a dose- and cell line-dependent decrease in cell proliferation/viability, with the strongest effect of IsoP against the Saos-2 cell line (IC50; 42.59 µM), medium effect against U266, HT-29, and RPMI8226 (IC50 = 84.14, 95.53, and 105.0 µM, respectively), and very weak activity against invasive HOS (IC50; 321.6 µM) and SW620 (IC50; 711.30 µM) cells, as well as normal human skin fibroblasts (HSFs), with IC50; 410.7 µM. The mechanistic study on the Saos-2 cell line showed that IsoP was able to reduce DNA synthesis and trigger apoptosis via caspase-3 activation. In general, IsoP was found to have more potency towards cancerous cells (except for HOS and SW620) than against healthy cells. The Selective Index (SI) was determined, underlining the higher selectivity of IsoP towards cancer cells compared to healthy cells (SI = 9.62 against Saos-2). All these results suggest that IsoP might be a promising molecule in the chemo-prevention and treatment of primary osteosarcoma.
Collapse
Affiliation(s)
- Magdalena Bartnik
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, Chodźki 1 Street, 20-093 Lublin, Poland;
| | - Adrianna Sławińska-Brych
- Department of Cell Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland;
| | - Magdalena Mizerska-Kowalska
- Department of Virology and Immunology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (M.M.-K.); (B.Z.)
| | - Anna Karolina Kania
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, Chodźki 1 Street, 20-093 Lublin, Poland;
| | - Barbara Zdzisińska
- Department of Virology and Immunology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (M.M.-K.); (B.Z.)
| |
Collapse
|
3
|
Bartnik M. Methoxyfuranocoumarins of Natural Origin-Updating Biological Activity Research and Searching for New Directions-A Review. Curr Issues Mol Biol 2024; 46:856-883. [PMID: 38275669 PMCID: PMC10813879 DOI: 10.3390/cimb46010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Plant secondary metabolites, including furanocoumarins, have attracted attention for decades as active molecules with therapeutic potential, especially those occurring in a limited number of species as evolutionarily specific and chemotaxonomically important. The most famous methoxyfuranocoumarins (MFCs), bergapten, xanthotoxin, isopimpinellin, phellopterin, byakangelicol, byakangelicin, isobergapten, pimpinellin, sphondin, as well as rare ones such as peucedanin and 8-methoxypeucedanin, apaensin, cnidilin, moellendorffiline and dahuribiethrins, have recently been investigated for their various biological activities. The α-glucosidase inhibitory activity and antioxidant potential of moellendorffiline, the antiproliferative and proapoptotic properties of non-UV-activated bergapten and xanthotoxin, the effect of MFC on the activity of tyrosinase, acetyl- and butylcholinesterase, and the role of these compounds as adjuvants in anticancer and antibacterial tests have been confirmed. The anticonvulsant effects of halfordin, the antidepressant effects of xanthotoxin, and the antiadipogenic, neuroprotective, anti-amyloid-β, and anti-inflammatory (via increasing SIRT 1 protein expression) properties of phellopterin, as well as the activity of sphondin against hepatitis B virus, have also attracted interest. It is worth paying attention to the agonistic effect of xanthotoxin on bitter taste receptors (TAS2Rs) on cardiomyocytes, which may be important in the future treatment of tachycardia, as well as the significant anti-inflammatory activity of dahuribiethrins. It should be emphasized that MFCs, although in many cases isolated for the first time many years ago, are still of great interest as bioactive molecules. The aim of this review is to highlight key recent developments in the study of the diverse biological activities of MFCs and attempt to highlight promising directions for their further research. Where possible, descriptions of the mechanisms of action of MFC are provided, which is related to the constantly discovered therapeutic potential of these molecules. The review covers the results of experiments from the last ten years (2014-2023) conducted on isolated natural cMFCs and includes the activity of molecules that have not been activated by UV rays.
Collapse
Affiliation(s)
- Magdalena Bartnik
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, Chodźki 1 Street, 20-093 Lublin, Poland
| |
Collapse
|
4
|
Simultaneous determination of twenty-nine active compounds in fuzhengjiedu granules by HPLC-QQQ-MS/MS. Heliyon 2023; 9:e13675. [PMID: 36873156 PMCID: PMC9975104 DOI: 10.1016/j.heliyon.2023.e13675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
As an empirical medicine of traditional Chinese medicine, Fuzhengjiedu Granules have shown an effect against COVID-19 in clinical and inflammatory animal models. It is formulated with eight herbs, including Aconiti Lateralis Radix Praeparata, Zingiberis Rhizoma, Glycyrrhizae Radix Et Rhizoma, Lonicerae Japonicae Flos, Gleditsiae Spina, Fici Radix, Pogostemonis Herba, and Citri Reticulatae Pericarpium. This study established a high-performance liquid chromatography-triple quadrupole mass spectrometry (HPLC-QQQ-MS/MS) method by simultaneously determining 29 active compounds in the granules with significant content differences. Separation by gradient elution using acetonitrile and water (0.1% formic acid) as mobile phases was performed on a Waters Acquilty UPLC T3 column (2.1 mm × 100 mm, 1.7 μm). A triple quadrupole mass spectrometer, operating in positive and negative ionization modes, was used for multiple reaction monitoring to detect the 29 compounds. All calibration curves showed good linear regression (r2 > 0.998). RSDs of precision, reproducibility, and stability of active compounds were all lower than 5.0%. The recovery rates were 95.4-104.9%, with RSDs< 5.0%. This method was successfully used to analyze the samples, and the results showed that 26 representative active components from 8 herbs were detected in the granules. While aconitine, mesaconitine, and hypaconitine were not detected, indicating that the existing samples were safe. The granules had the maximum and minimum content of hesperidin (27.3 ± 0.375 mg/g) and benzoylaconine (38.2 ± 0.759 ng/g). To conclude, a fast, accurate, sensitive, and reliable HPLC-QQQ-MS/MS method was established, which can simultaneously detect 29 active compounds that have a considerable difference in the content of Fuzhengjiedu Granules. This study can be used to control the quality and safety of Fuzhengjiedu Granules and provide a basis and guarantee for further experimental research and clinical application.
Collapse
|
5
|
Park J, Lee H, Park K. Gastrointestinal tract and skin permeability of chemicals in consumer products using parallel artificial membrane permeability assay (PAMPA). Environ Anal Health Toxicol 2021; 36:e2021021-0. [PMID: 34583463 PMCID: PMC8598401 DOI: 10.5620/eaht.2021021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/12/2021] [Indexed: 12/23/2022] Open
Abstract
Some chemicals commonly used in personal care products, household items, food vessels, cosmetics, and other consumer products are potentially harmful, and several reviews of epidemiological studies have suggested the associations between the chemical exposure from consumer products, and respiratory diseases, skin sensitization, and reproductive problems. Therefore, risk assessment is essential for management of consumer products safety. Necessarily, the estimation of human exposure is an essential step in risk assessment, and the absorption rate of those chemicals via the gastrointestinal tract, respiratory tract, and skin are very critical in determining the internal dose of the exposed chemicals. In this study, parallel artificial membrane permeability assays (PAMPA) for the gastrointestinal tract and skin were performed to evaluate the permeability of parabens (4-hydroxybenzoic acid, methyl-, propyl-, and butyl paraben), bisphenols (bisphenol A, bisphenol F, and bisphenol S), isothiazolinones (methyl-, chloromethyl-, benz-, octyl-, and dichlorooctyl isothiazolinone), and phthalates [diethyl-, dibutyl-, Di-isononyl-, and bis(2-ethylhexyl) phthalate]. Lipid solubility of test chemicals indicated by log P values was shown as the most critical factor and showed a positive association with the permeability of parabens, bisphenols, and isothiazolinones in PAMPA assay. However, phthalate showed a reverse-association between lipophilicity and permeability. The permeability of all the tested chemicals was higher in the gastrointestinal tract membrane than in the skin membrane. The pH in donor solution did not show significant effects on the permeability in all the chemicals, except the chemicals with a free hydrophilic moiety in their chemical structures.
Collapse
Affiliation(s)
- Juyoung Park
- College of Pharmacy, Dongduk Women's University, Seoul 02748, Korea
| | - Handule Lee
- College of Pharmacy, Dongduk Women's University, Seoul 02748, Korea
| | - Kwangsik Park
- College of Pharmacy, Dongduk Women's University, Seoul 02748, Korea
| |
Collapse
|
6
|
An In Vitro Study for Evaluating Permeability and Metabolism of Kurarinone. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:5267684. [PMID: 33005200 PMCID: PMC7509555 DOI: 10.1155/2020/5267684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 09/03/2020] [Indexed: 12/26/2022]
Abstract
Kurarinone is a major component found in the dried roots of Sophora flavescens Ait. that participates in vital pharmacological activities. Recombinant CYP450 supersomes and liver microsomes were used to study the metabolic profiles of kurarinone and its inhibitory actions against cytochrome P450 (CYP) and UDP-glucuronosyltransferase (UGT) enzymes. 100 μM of kurarinone strongly inhibited more than 90% of UGT1A1, UGT1A6, CYP1A2, and CYP2C9. CYP1A2 and CYP2D6 played important roles in catalyzing the biotransformation of kurarinone. Moreover, metabolism of kurarinone considerably differs among species, and metabolic characteristics were similar between monkey and human. Kurarinone demonstrated moderate permeability at values of pH 4.0 and 7.4. Our findings offer a clearer idea to understand the pharmacological and toxicological mechanisms of kurarinone.
Collapse
|
7
|
Adhikary RR, Koppaka O, Banerjee R. Development of color changing polydiacetylene-based biomimetic nanovesicle platforms for quick detection of membrane permeability across the blood brain barrier. NANOSCALE 2020; 12:8898-8908. [PMID: 32266882 DOI: 10.1039/c9nr07845b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Membrane permeability through passive diffusion is one of the important pathways for passage of drugs across the blood brain barrier (BBB). The present study describes the development of biomimetic unilamellar lipopolymeric nanovesicles of size 268 ± 37 nm, consisting of polar brain lipids in conjunction with polydiacetylene and validation of their application for an abbreviated yet accurate membrane permeability assay with high-throughput and rapid identification of BBB permeability of drugs. The nanovesicle suspension was tested with drugs of known permeability across the BBB to validate the detection of changes in hue, absorbance and fluorescence in response to permeation across the nanovesicles. A simple device was developed based on the nanovesicle sensors along with a mobile application which allowed for the determination of hue corresponding to qualitative identification of whether a drug is BBB permeable (BBB+) or not (BBB-). With respect to determination of a suitable endpoint in this assay, a hue cut off of 275°, reduction in %blueness by less than 59% and a fluorescence intensity of ≥0.22 a.u. at 560 nm accurately differentiated between drugs which are permeable and impermeable across the BBB within 5 minutes. Further quantification of BBB permeability can be done through the concentration at which the above end-points are achieved. For the quantification of the permeability, absorbance and fluorescence measurements were performed. The device thus developed allows the rapid determination of BBB permeability of various agents in drug discovery especially in smaller set-ups with minimal equipment through changes in color, absorbance and fluorescence.
Collapse
Affiliation(s)
- Rishi Rajat Adhikary
- Nanomedicine Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| | | | | |
Collapse
|
8
|
Piazzini V, Landucci E, Urru M, Chiarugi A, Pellegrini-Giampietro DE, Bilia AR, Bergonzi MC. Enhanced dissolution, permeation and oral bioavailability of aripiprazole mixed micelles: In vitro and in vivo evaluation. Int J Pharm 2020; 583:119361. [PMID: 32334067 DOI: 10.1016/j.ijpharm.2020.119361] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 02/06/2023]
Abstract
Aripiprazole (ARP) is an antipsychotic drug approved for the treatment of schizophrenia. It is poorly water-soluble and undergoes extensive hepatic metabolism and P-gp efflux, which lead to poor bioavailability and increased dose-related side effects. This study focuses on the preparation of mixed micelles (MM) to enhance the aqueous solubility, oral bioavailability, and blood-brain barrier permeation of ARP. For this purpose, Soluplus and D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) were selected for micelle preparation (ARP-MM). Micelles with borneol as penetration enhancer were also considered (ARP-B-MM). The optimized formulations have sizes of ca 50 nm, defined in distilled water, narrow size distribution (polydispersity index ≤0.1), and high encapsulation efficiency (greater than98%). Both formulations can be freeze-dried without losing their chemical-physical characteristics and are stable during storage for three months. The mixed micelles resulted stable in enzyme free-simulated gastric fluid (SGF, pH 1.2), simulated intestinal fluid (SIF, pH 6.8), and in serum. The in vitro ARP release was evaluated in the same biorelevant media, (SGF and SIF), and it disclosed that both micelles can give prolonged drug release. Furthermore, ARP solubility is greatly increased when loaded into mixed micelles. The absorption and efflux of ARP-loaded micelles were studied in vitro, employing two artificial membranes (Parallel Artificial Membrane Permeability Assay for the intestinal, PAMPA-GI, and the blood-brain barrier, PAMPA-BBB), to simulate the intestinal and brain epithelium, and the brain microvascular endothelial cell line hCMEC/D3. ARP-MM and ARP-B-MM increase the effective permeability of ARP by a factor of about three in the case of PAMPA-GI and about two for PAMPA-BBB. Furthermore, the P-gp mediated efflux was decreased by about six times in the case of ARP-MM and by about four times in the case of ARP-B-MM, compared to unformulated ARP. Finally, both ARP-loaded mixed micelles ameliorate the bioavailability of ARP, as demonstrated by the increase of the pharmacokinetic parameters, such as Cmax, AUC0-24h, and t1/2.
Collapse
Affiliation(s)
- Vieri Piazzini
- Department of Chemistry, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| | - Elisa Landucci
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy.
| | - Matteo Urru
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy.
| | - Alberto Chiarugi
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy.
| | - Domenico E Pellegrini-Giampietro
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy.
| | - Anna Rita Bilia
- Department of Chemistry, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| | - Maria Camilla Bergonzi
- Department of Chemistry, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
9
|
Huang S, Huang Y, Yin X, Wang D, Xiang W, Wang M, Xia Z. Development of Ussing model coupled with artificial membrane for predicting intestinal absorption mechanisms of drugs. Int J Pharm 2020; 579:119170. [DOI: 10.1016/j.ijpharm.2020.119170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 10/25/2022]
|
10
|
Liu L, Liu Z, Li H, Cao Z, Li W, Song Z, Li X, Lu A, Lu C, Liu Y. Naturally Occurring TPE-CA Maintains Gut Microbiota and Bile Acids Homeostasis via FXR Signaling Modulation of the Liver-Gut Axis. Front Pharmacol 2020; 11:12. [PMID: 32116693 PMCID: PMC7015895 DOI: 10.3389/fphar.2020.00012] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 01/07/2020] [Indexed: 12/11/2022] Open
Abstract
Antibiotics-induced changes in intestinal flora (dysbiosis) may have various effects on the host. Dysbiosis is associated with numerous metabolites including bile acids, which are produced in the liver from cholesterol and metabolized in the gut by intestinal microbiota. Total phenolic extracts of Citrus aurantium L. (TPE-CA) are rich in dietary flavanones and their glycosyl derivatives, including flavones, flavonols, polymethoxyflavones and coumarins, which exert positive health effects on the microbiota. The aim of this study is to elucidate the interplays between the intestinal microbiota and bile acids metabolism attributed to antibiotics. Mice were exposed to broad-spectrum antibiotics, such as ampicillin, streptomycin and clindamycin, for 14 days. This exposure resulted in reduced bacterial diversity and richness, and destroyed intestinal permeability. The homeostasis of bile acids was also affected. Subsequent TPE-CA administration, counteracted most of the dysbiosis, and reshaped intestinal permeability, these effects occurred via upregulation of zonula occludens 1 and occludin associated proteins and downregulation of serum endotoxin compared to the antibiotics group. TPE-CA maintained the homeostasis of bile acids via modulation of the liver-gut axis related farnesoid X receptor (FXR)/fibroblast growth factor 15 (FGF15) pathway and FXR-targeted protein. Our findings indicated that TPE-CA exerted a protective effect on the restoration of intestinal microbiota composition, reshaped barrier integrity and maintained bile acid homeostasis via the liver-gut axis with antibiotics-induced dysbiosis.
Collapse
Affiliation(s)
- Linlin Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhenli Liu
- Institution of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hui Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhiwen Cao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wen Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhiqian Song
- Institution of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiang Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Aiping Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
11
|
Li H, Liu Z, Liu L, Li W, Cao Z, Song Z, Yang Q, Lu A, Lu C, Liu Y. Vascular Protection of TPE-CA on Hyperhomocysteinemia-induced Vascular Endothelial Dysfunction through AA Metabolism Modulated CYPs Pathway. Int J Biol Sci 2019; 15:2037-2050. [PMID: 31592228 PMCID: PMC6775291 DOI: 10.7150/ijbs.35245] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/05/2019] [Indexed: 12/28/2022] Open
Abstract
A high concentration of homocysteine (Hcy) in plasma induces vascular endothelial dysfunction, and it may ultimately accelerate the development of cardiovascular diseases (CVDs). Although several B vitamins have been clinically applied for hyperhomocysteinemia (HHcy) treatment, the outcomes are not satisfied due to their limited therapeutic mechanism. Hence, in order to improve the curative effect, development of new effective therapeutic strategies should be put on the agenda. Total phenolic extracts of Citrus aurantium L. (TPE-CA) is a naturally obtained phenolic mixture, mainly containing flavones, flavanones and their glycosyl derivatives, flavonols, polymethoxyflavones and coumarins. Previous reports indicated that bioactive phenolic compounds possessed potent vascular protective effects and regarded as a protective agent against CVDs. Intriguingly, the exact mechanism underlying the suppressed effects of TPE-CA on HHcy could assist in revealing their therapy on CVDs. Here, the multi-targeted synergistic mechanism of TPE-CA on HHcy-induced vascular endothelial dysfunction was uncovered in a deduced manner. TPE-CA treatment exhibited an obvious superiority than that of B vitamins treatment. Network pharmacology was employed to identify the interrelationships among compounds, potential targets and putative pathways. Further experimental validation suggested that the treatment of TPE-CA for HHcy could not only effectively reduce the Hcy level in plasma through up-regulating transsulfuration pathway in Hcy metabolism, but also restore the HHcy-induced vascular endothelial dysfunction by activating cytochrome P450 enzymes (CYPs) epoxygenase signal cascades and inhibiting CYPs hydroxylase signal cascades in arachidonic acid (AA) metabolism.
Collapse
Affiliation(s)
- Hui Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhenli Liu
- Institution of Basic Theory, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Linlin Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wen Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhiwen Cao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhiqian Song
- Institution of Basic Theory, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qianqian Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Aiping Lu
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hongkong, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|