1
|
Liu YY, Dou GJ, Xiao YC, Chen XY, Wei LX, Zhou WB. Therapeutic potential of Cordyceps sinensis targeting oxidative stress and inflammatory response in the treatment of COPD rats: insights from metabolomics analysis. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2025; 27:460-477. [PMID: 39287960 DOI: 10.1080/10286020.2024.2403611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/08/2024] [Accepted: 09/08/2024] [Indexed: 09/19/2024]
Abstract
This study aimed to investigate the effects of wild Cordyceps sinensis on chronic obstructive pulmonary disease (COPD) rats through metabolomics approach, combined with biochemical parameters evaluations. Consequently, C. sinensis exhibited regulatory effects on the lung's metabolic profiles in COPD rats. Treatment with C. sinensis potentially modulated glycerophospholipid metabolism, glutathione metabolism, and tryptophan metabolism, thereby alleviating oxidative stress (by decreasing MDA and GSSG, while increasing SOD and GSH) and inflammatory response (by inhibiting TNF-α, IL-8, and MMP-9) in COPD rats while improving lung tissue damage.
Collapse
Affiliation(s)
- Ying-Ying Liu
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810008, China
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gai-Jie Dou
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810008, China
- College of Tibetan Medicine, Qinghai University, Xining 810016, China
| | - Yuan-Can Xiao
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810008, China
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China
| | - Xiao-Yi Chen
- Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo 315032, China
| | - Li-Xin Wei
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810008, China
| | - Wen-Bin Zhou
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810008, China
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China
| |
Collapse
|
2
|
Li H, Li J, Zhang Y, Zhao C, Ge J, Sun Y, Fu H, Li Y. The therapeutic effect of traditional Chinese medicine on breast cancer through modulation of the Wnt/β-catenin signaling pathway. Front Pharmacol 2024; 15:1401979. [PMID: 38783943 PMCID: PMC11111876 DOI: 10.3389/fphar.2024.1401979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
Breast cancer, the most prevalent malignant tumor among women globally, is significantly influenced by the Wnt/β-catenin signaling pathway, which plays a crucial role in its initiation and progression. While conventional chemotherapy, the standard clinical treatment, suffers from significant drawbacks like severe side effects, high toxicity, and limited prognostic efficacy, Traditional Chinese Medicine (TCM) provides a promising alternative. TCM employs a multi-targeted therapeutic approach, which results in fewer side effects and offers a high potential for effective treatment. This paper presents a detailed analysis of the therapeutic impacts of TCM on various subtypes of breast cancer, focusing on its interaction with the Wnt/β-catenin signaling pathway. Additionally, it explores the effectiveness of both monomeric and compound forms of TCM in the management of breast cancer. We also discuss the potential of establishing biomarkers for breast cancer treatment based on key proteins within the Wnt/β-catenin signaling pathway. Our aim is to offer new insights into the prevention and treatment of breast cancer and to contribute to the standardization of TCM.
Collapse
Affiliation(s)
- Hongkun Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiawei Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yifan Zhang
- College of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chengcheng Zhao
- Experimental Teaching and Practical Training Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jun Ge
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yujiao Sun
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hui Fu
- College of Integrated Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yingpeng Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
3
|
Lin C, Tian Q, Guo S, Xie D, Cai Y, Wang Z, Chu H, Qiu S, Tang S, Zhang A. Metabolomics for Clinical Biomarker Discovery and Therapeutic Target Identification. Molecules 2024; 29:2198. [PMID: 38792060 PMCID: PMC11124072 DOI: 10.3390/molecules29102198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/10/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
As links between genotype and phenotype, small-molecule metabolites are attractive biomarkers for disease diagnosis, prognosis, classification, drug screening and treatment, insight into understanding disease pathology and identifying potential targets. Metabolomics technology is crucial for discovering targets of small-molecule metabolites involved in disease phenotype. Mass spectrometry-based metabolomics has implemented in applications in various fields including target discovery, explanation of disease mechanisms and compound screening. It is used to analyze the physiological or pathological states of the organism by investigating the changes in endogenous small-molecule metabolites and associated metabolism from complex metabolic pathways in biological samples. The present review provides a critical update of high-throughput functional metabolomics techniques and diverse applications, and recommends the use of mass spectrometry-based metabolomics for discovering small-molecule metabolite signatures that provide valuable insights into metabolic targets. We also recommend using mass spectrometry-based metabolomics as a powerful tool for identifying and understanding metabolic patterns, metabolic targets and for efficacy evaluation of herbal medicine.
Collapse
Affiliation(s)
- Chunsheng Lin
- Graduate School and Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.L.); (S.G.); (Y.C.); (Z.W.)
| | - Qianqian Tian
- Faculty of Social Sciences, The University of Hong Kong, Hong Kong 999077, China;
| | - Sifan Guo
- Graduate School and Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.L.); (S.G.); (Y.C.); (Z.W.)
- International Advanced Functional Omics Platform, Scientific Experiment Center, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases (First Affiliated Hospital of Hainan Medical University), Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China; (D.X.); (S.Q.); (S.T.)
| | - Dandan Xie
- International Advanced Functional Omics Platform, Scientific Experiment Center, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases (First Affiliated Hospital of Hainan Medical University), Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China; (D.X.); (S.Q.); (S.T.)
| | - Ying Cai
- Graduate School and Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.L.); (S.G.); (Y.C.); (Z.W.)
- International Advanced Functional Omics Platform, Scientific Experiment Center, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases (First Affiliated Hospital of Hainan Medical University), Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China; (D.X.); (S.Q.); (S.T.)
| | - Zhibo Wang
- Graduate School and Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.L.); (S.G.); (Y.C.); (Z.W.)
- International Advanced Functional Omics Platform, Scientific Experiment Center, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases (First Affiliated Hospital of Hainan Medical University), Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China; (D.X.); (S.Q.); (S.T.)
| | - Hang Chu
- Department of Biomedical Sciences, Beijing City University, Beijing 100193, China;
| | - Shi Qiu
- International Advanced Functional Omics Platform, Scientific Experiment Center, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases (First Affiliated Hospital of Hainan Medical University), Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China; (D.X.); (S.Q.); (S.T.)
| | - Songqi Tang
- International Advanced Functional Omics Platform, Scientific Experiment Center, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases (First Affiliated Hospital of Hainan Medical University), Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China; (D.X.); (S.Q.); (S.T.)
| | - Aihua Zhang
- Graduate School and Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.L.); (S.G.); (Y.C.); (Z.W.)
- International Advanced Functional Omics Platform, Scientific Experiment Center, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases (First Affiliated Hospital of Hainan Medical University), Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China; (D.X.); (S.Q.); (S.T.)
| |
Collapse
|
4
|
Tang J, Xu J, Xu J, Fan Z, Ye X, Xia Z, Guo M. Soluble polyvinylpyrrolidone-based microneedles loaded with Sanguis draconis and Salvia miltiorrhiza for treatment of diabetic wound healing. Skin Res Technol 2024; 30:e13671. [PMID: 38558153 PMCID: PMC10982673 DOI: 10.1111/srt.13671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 04/04/2024]
Abstract
BACKGROUND Nowadays, diabetic wound healing remains a crucial challenge due to their protracted and uncertain healing process. Traditional Chinese medicine (TCM) has demonstrated the therapeutic value of Sanguis draconis (SD)-Salvia miltiorrhiza (SMR) Herb Pair in diabetic wound healing. However, new administration modes are urgently needed for their convenient and wide-ranging applications. OBJECTIVE We propose a soluble polyvinylpyrrolidone-based microneedle patch containing the herbal extracts of SD and SMR (MN-SD@SMR) for diabetic wound healing. METHODS The herbal extracts of SD and SMR are purification and concentration via traditional lyophilization. SD endowed MN-SD@SMR with functions to improve high glycemic blood environment and migration of keratinocyte and fibroblast cells. RESULTS SMR in MN-SD@SMR could improve blood flow velocity and microcirculation in the wound area. The effectiveness of transdermal release and mechanical strengths of MN-SD@SMR were verified. CONCLUSION Integrating the advantages of these purified herbal compositions, we demonstrated that MN-SD@SMR had a positive healing effect on the wounds in vitro and vivo. These results indicate that soluble polyvinylpyrrolidone-based microneedle patch containing the herbal extracts of SD and SMR has a promising application value due to their superior capability to promote diabetic wound healing.
Collapse
Affiliation(s)
- Jiangdong Tang
- School of Mechanical EngineeringJiangsu University of TechnologyChangzhouJiangsuChina
| | - Jiawei Xu
- State Key Laboratory of Elemento‐Organic ChemistryCollege of ChemistryNankai UniversityTianjinChina
| | - Jianda Xu
- Department of OrthopaedicsChangzhou Traditional Chinese Medical HospitalAffiliated to Nanjing University of Traditional Chinese MedicineChangzhouJiangsuChina
| | - Zhenmin Fan
- School of Mechanical EngineeringJiangsu University of TechnologyChangzhouJiangsuChina
| | - Xia Ye
- School of Mechanical EngineeringJiangsu University of TechnologyChangzhouJiangsuChina
| | - Zhongyu Xia
- Department of OrthopaedicsChangzhou Traditional Chinese Medical HospitalAffiliated to Nanjing University of Traditional Chinese MedicineChangzhouJiangsuChina
| | - Meifeng Guo
- Department of OrthopaedicsChangzhou Traditional Chinese Medical HospitalAffiliated to Nanjing University of Traditional Chinese MedicineChangzhouJiangsuChina
| |
Collapse
|
5
|
Xie H, Hu M, Yu J, Yang X, Li J, Yu N, Han L, Peng D. Mass spectrometry-based metabolomics reveal Dendrobium huoshanense polysaccharide effects and potential mechanism of N-methyl-N'-nitro-N-nitrosoguanidine -induced damage in GES-1 cells. JOURNAL OF ETHNOPHARMACOLOGY 2023; 310:116342. [PMID: 36889419 DOI: 10.1016/j.jep.2023.116342] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/16/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dendrobium huoshanense C. Z. Tang et S. J. Cheng is an important edible medicinal plant that thickens the stomach and intestines, and its active ingredient, polysaccharide, can have anti-inflammatory, immunoregulatory, and antitumor effects. However, the gastroprotective effects and potential mechanisms of Dendrobium huoshanense polysaccharides (DHP) remain unclear. AIM OF THE STUDY An N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) induced human gastric mucosal epithelial cells (GES-1) damage model was used in this research, aiming to investigate whether DHP has a protective effect on MNNG-induced GES-1 cell injury and its underlying mechanism based on the combination of multiple methods. MATERIALS AND METHODS DHP was extracted using water extraction and alcohol precipitation methods, and the proteins were removed using the Sevag method. The morphology was observed using scanning electron microscopy. A MNNG-induced GES-1 cell damage model was developed. Cell viability and proliferation of the experimental cells were investigated using a cell counting kit-8 (CCK-8). Cell nuclear morphology was detected using the fluorescent dye Hoechst 33342. Cell scratch wounds and migration were detected using a Transwell chamber. The expression levels of apoptosis proteins (Bcl-2, Bax, Caspase-3) in the experimental cells were detected by Western blotting. Ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) was performed to investigate the potential mechanism of action of DHP. RESULTS The CCK-8 kit analysis showed that DHP increased GES-1 cell viability and ameliorated GES-1 cell injury by MNNG. In addition, scratch assay and Transwell chambers results suggested that DHP improved the MNNG-induced motility and migration ability of GES-1 cells. Likewise, the results of the apoptotic protein assay indicated that DHP had a protective effect against gastric mucosal epithelial cell injury. To further investigate the potential mechanism of action of DHP, we analyzed the metabolite differences between GES-1 cells, GES-1 cells with MNNG-induced injury, and DHP + MMNG-treated cells using UHPLC-HRMS. The results indicated that DHP upregulated 1-methylnicotinamide, famotidine, N4-acetylsulfamethoxazole, acetyl-L-carnitine, choline and cer (d18:1/19:0) metabolites and significantly down-regulated 6-O-desmethyldonepezil, valet hamate, L-cystine, propoxur, and oleic acid. CONCLUSIONS DHP may protect against gastric mucosal cell injury through nicotinamide and energy metabolism-related pathways. This research may provide a useful reference for further in-depth studies on the treatment of gastric cancer, precancerous lesions, and other gastric diseases.
Collapse
Affiliation(s)
- Huiqun Xie
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Mengqing Hu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Jiao Yu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xinyu Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Jinmiao Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Nianjun Yu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China; Institute of Conservation and Development of Traditional Chinese Medicine Resources, Hefei, China
| | - Lan Han
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China; Institute of Conservation and Development of Traditional Chinese Medicine Resources, Hefei, China
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China; Institute of Conservation and Development of Traditional Chinese Medicine Resources, Hefei, China.
| |
Collapse
|
6
|
Chen J, Lu X, Chen P, Shen Y, Zheng B, Guo Z. Anti-fatigue effect of glycoprotein from hairtail (Trichiurus lepturus) by-products in a behavioral mouse model. Food Chem X 2023; 18:100645. [PMID: 36968310 PMCID: PMC10034424 DOI: 10.1016/j.fochx.2023.100645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Hairtail (Trichiurus lepturus) is a kind of abundant marine fish, and its by-products contain rich protein resources, which can be better exploited and utilized in the food industry. In this study, the glycoprotein of hairtail by-products (GHB) was extracted using ultrasonic-assisted salt solution extraction with hairtail by-products as the raw material. The anti-fatigue effect of GHB was explored by mouse behavior experiments (shuttle box test, open field test and load swimming test). The results showed that the active escape times of the GHB group increased compared with the blank group in the shuttle box test, and the GHB group stayed in the central area for more time in the open field test. At the same time, the exhaustive swimming time of high-dose-group mice was 122.01% longer than that of the blank control group. GHB can improve the memory learning ability and activity of mice, and exert its anti-fatigue effect by eliminating excessive free radicals, slowing the metabolism of amino acids and proteins, and increasing glycogen reserves. This study provides a theoretical basis for the function mechanism of glycoprotein of hairtail by-products and the development of supplementary material in functional foods.
Collapse
Affiliation(s)
- Jiaqi Chen
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, PR China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Xiaodan Lu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, PR China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Peixin Chen
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, PR China
| | - Yijie Shen
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, PR China
| | - Baodong Zheng
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, PR China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Zebin Guo
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, PR China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
- Corresponding author at: College of Food Science, Fujian Agriculture and Forestry University, No. 15, Shangxiadian Road, Cangshan District, Fuzhou City, Fujian Province 350002, PR China.
| |
Collapse
|
7
|
The Anti-Fatigue Effect of Glycoprotein from Hairtail Fish (Trichiurus lepturus) on BALB/c Mice. Foods 2023; 12:foods12061245. [PMID: 36981171 PMCID: PMC10048760 DOI: 10.3390/foods12061245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Fatigue is related to a variety of chronic diseases and has become a hot research topic in recent years. Various bioactive components have been extracted from hairtail fish (Trichiurus lepturus); however, none of these studies involved the anti-fatigue activity of hairtail fish glycoprotein (HGP). Thus, antioxidant experiments were conducted in vitro, and the anti-fatigue activity of HGP was further evaluated in BALB/c mice. The effects of HGP on the behavior of BALB/c mice were verified by classical behavioral experiments, and the indicators related to anti-fatigue activity were detected. The results showed that the antioxidant capacity in vitro of HGP increased gradually in the concentration range of 10 to 100 mg/mL. HGP improved the exercise ability of the mice. HGP was also found to significantly (p < 0.05) reduce the serum levels of lactate dehydrogenase (LDH), blood lactic acid (BLA), blood urea nitrogen (BUN), and creatine kinase (CK). The contents of liver glycogen (LG) and muscle glycogen (MG) were also significantly (p < 0.05) increased by HGP. Malondialdehyde (MDA) content in the serum and brains of the mice was significantly (p < 0.05) reduced and catalase (CAT), glutathione peroxidase (GPX), and superoxide dismutase (SOD) were significantly (p < 0.05) increased by HGP, especially in the middle- and high-dose groups. These results enhance our understanding of the anti-fatigue function of HGP and lay an important foundation for the further development and utilization of hairtail fish resources.
Collapse
|
8
|
Anti-fatigue Effect of Traditional Chinese Medicines: A Review. Saudi Pharm J 2023; 31:597-604. [PMID: 37063439 PMCID: PMC10102495 DOI: 10.1016/j.jsps.2023.02.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
A third of the world's population suffers from unexplained fatigue, hugely impacting work learning, efficiency, and health. The fatigue development may be a concomitant state of a disease or the side effect of a drug, or muscle fatigue induced by intense exercise. However, there are no authoritative guides or clinical medication recommendations for various fatigue classifications. Traditional Chinese medicines (TCM) are used as dietary supplements or healthcare products with specific anti-fatigue effects. Thus, TCM may be a potential treatment for fatigue. In this review, we outline the pathogenesis of fatigue, awareness of fatigue in Chinese and western medicine, pharmacodynamics mechanism, and substances. Additionally, we offer a comprehensive summary of fatigue and forecast the potential effect of novel herbal-based medicines against fatigue.
Collapse
|
9
|
Li L, Du Y, Wang Y, He N, Wang B, Zhang T. Atractylone Alleviates Ethanol-Induced Gastric Ulcer in Rat with Altered Gut Microbiota and Metabolites. J Inflamm Res 2022; 15:4709-4723. [PMID: 35996682 PMCID: PMC9392477 DOI: 10.2147/jir.s372389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/03/2022] [Indexed: 11/23/2022] Open
Abstract
Background Gastric ulcer (GU) is the most common multifactor gastrointestinal disorder affecting millions of people worldwide. There is evidence that gut microbiota is closely related to the development of GU. Atractylone (ATR) has been reported to possess potential biological activities, but research on ATR alleviating GU injury is unprecedented. Methods Helicobacter pylori (H. pylori)-induced GU model in zebrafish and ethanol-induced acute GU model in rat were established to evaluate the anti-inflammatory and ulcer inhibitory effects of ATR. Then, 16S rRNA sequencing and metabolomics analysis were performed to investigate the effect of ATR on the microbiota and metabolites in rat feces and their correlation. Results Therapeutically, ATR inhibited H. pylori-induced gastric mucosal injury in zebrafish. In the ulceration model of rat, ATR mitigated the gastric lesions damage caused by ethanol, decreased the ulcer area, and reduced the production of inflammatory factors. Additionally, ATR alleviated the gastric oxidative stress injury by increasing the activity of superoxide dismutase (SOD) and decreasing the level of malondialdehyde (MDA). Furthermore, ATR played a positive role in relieving ulcer through reshaping gut microbiota composition including Parabacteroides and Bacteroides and regulating the levels of metabolites including amino acids, short-chain fatty acids (SCFAs), and bile acids. Conclusion Our work sheded light on the mechanism of ATR treating GU from the perspective of the gut microbiota and explored the correlation between gut microbiota, metabolites, and host phenotype.
Collapse
Affiliation(s)
- Ling Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, People’s Republic of China
| | - Yaoyao Du
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yang Wang
- Metabo-Profile Biotechnology (Shanghai) Co. Ltd, Shanghai, People’s Republic of China
| | - Ning He
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, People’s Republic of China
| | - Bing Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Chinese Academy of Sciences, Shanghai Institute of Materia Medica, Shanghai, People’s Republic of China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
10
|
A Comparative Study on Relieving Exercise-Induced Fatigue by Inhalation of Different Citrus Essential Oils. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103239. [PMID: 35630716 PMCID: PMC9145370 DOI: 10.3390/molecules27103239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022]
Abstract
Citrus essential oils (CEOs) possess physiological functions due to diverse aroma components. However, evidence for the effects of CEOs on exercise performance and exercise-induced fatigue is limited. The CEOs with discrepancies in components may exert different effects on the amelioration of exercise-induced fatigue. In this study, sweet orange (Citrus sinensis L.) essential oil (SEO), lemon (Citrus limon Osbeck) essential oil (LEO), and bergamot (Citrus bergamia Risso and Poit) essential oil (BEO) were chosen to explore the effect on amelioration of exercise-induced fatigue. Our results demonstrated that SEO and LEO increased the swimming time by 276% and 46.5%, while BEO did not. Moreover, the three CEOs exerted varying effects on mitigating exercise-induced fatigue via inhibiting oxidative stress, protecting muscle injury, and promoting glucose-dependent energy supply. Accordingly, BEO showed the best efficiency. Moreover, the GC-MS and Pearson correlation analysis of BEO showed that the contents of the major components, such as (±)-limonene (32.9%), linalyl butyrate (17.8%), and linalool (7.7%), were significantly positively correlated with relieving exercise-induced fatigue.
Collapse
|