1
|
Alterio A, Feltracco M, Mazzi G, Rosso B, Prosdocimi L, Gambaro A. Stress responses in blood donors: Oral fluid hormone dynamics and implications for donor support. Steroids 2025; 217:109604. [PMID: 40158788 DOI: 10.1016/j.steroids.2025.109604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
Glucocorticoids (cortisol and cortisone) hormones are potential biomarkers for monitoring physiological stress in humans. These hormones are released into the bloodstream but are also detectable in other biological matrixes such as oral fluid. Oral fluid hormone levels reflect those found in the blood, but oral fluid sampling is quicker and non-invasive, making it a viable alternative matrix for studying stress markers. This study investigates the stress response of blood donors at three different donation moments by analyzing cortisol and cortisone levels in oral fluid samples. To simultaneously detect these analytes, we developed and validated a new highly sensitive method using high-performance liquid chromatography coupled to a triple quadrupole mass spectrometer (HPLC-MS/MS). Glucocorticoid hormones were found in all samples with cortisone exhibiting higher concentrations than cortisol. Statistical results revealed a weakly negative trend over time for both analytes levels, indicating that the most crucial donation moment is upon donors' arrival. A notable distinction was found in the evolution of the glucocorticoid hormones in different locations, suggesting that different environmental factors influence stress level more than the act of donation itself.
Collapse
Affiliation(s)
- Agata Alterio
- Departiment of Environmental Science, Informatics and Statistic, Ca' Foscari University of Venice, Via Torino, 155, 30172 Venice Mestre (VE), Italy
| | - Matteo Feltracco
- Departiment of Environmental Science, Informatics and Statistic, Ca' Foscari University of Venice, Via Torino, 155, 30172 Venice Mestre (VE), Italy.
| | - Giovanna Mazzi
- Departiment of Environmental Science, Informatics and Statistic, Ca' Foscari University of Venice, Via Torino, 155, 30172 Venice Mestre (VE), Italy
| | - Beatrice Rosso
- Departiment of Environmental Science, Informatics and Statistic, Ca' Foscari University of Venice, Via Torino, 155, 30172 Venice Mestre (VE), Italy; Istitute of Polar Sciences, National Research Council (CNR-ISP), Via Torino, 155, 30172 Venice Mestre (VE), Italy
| | - Llaria Prosdocimi
- Departiment of Environmental Science, Informatics and Statistic, Ca' Foscari University of Venice, Via Torino, 155, 30172 Venice Mestre (VE), Italy
| | - Andrea Gambaro
- Departiment of Environmental Science, Informatics and Statistic, Ca' Foscari University of Venice, Via Torino, 155, 30172 Venice Mestre (VE), Italy; Istitute of Polar Sciences, National Research Council (CNR-ISP), Via Torino, 155, 30172 Venice Mestre (VE), Italy
| |
Collapse
|
2
|
Girel S, Meister I, Glauser G, Rudaz S. Hyphenation of microflow chromatography with electrospray ionization mass spectrometry for bioanalytical applications focusing on low molecular weight compounds: A tutorial review. MASS SPECTROMETRY REVIEWS 2025; 44:491-512. [PMID: 38952056 PMCID: PMC11976378 DOI: 10.1002/mas.21898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/10/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024]
Abstract
Benefits of miniaturized chromatography with various detection modes, such as increased sensitivity, chromatographic efficiency, and speed, were recognized nearly 50 years ago. Over the past two decades, this approach has experienced rapid growth, driven by the emergence of mass spectrometry applications serving -omics sciences and the need for analyzing minute volumes of precious samples with ever higher sensitivity. While nanoscale liquid chromatography (flow rates <1 μL/min) has gained widespread recognition in proteomics, the adoption of microscale setups (flow rates ranging from 1 to 100 μL/min) for low molecular weight compound applications, including metabolomics, has been surprisingly slow, despite the inherent advantages of the approach. Highly heterogeneous matrices and chemical structures accompanied by a relative lack of options for both selective sample preparation and user-friendly equipment are usually reported as major hindrances. To facilitate the wider implementation of microscale analyses, we present here a comprehensive tutorial encompassing important theoretical and practical considerations. We provide fundamental principles in micro-chromatography and guide the reader through the main elements of a microflow workflow, from LC pumps to ionization devices. Finally, based on both our literature overview and experience, illustrated by some in-house data, we highlight the critical importance of the ionization source design and its careful optimization to achieve significant sensitivity improvement.
Collapse
Affiliation(s)
- Sergey Girel
- Institute of Pharmaceutical Sciences of Western SwitzerlandUniversity of GenevaGenevaSwitzerland
| | - Isabel Meister
- Institute of Pharmaceutical Sciences of Western SwitzerlandUniversity of GenevaGenevaSwitzerland
- Swiss Center of Applied Human Toxicology (SCAHT)BaselSwitzerland
| | - Gaetan Glauser
- Neuchâtel Platform of Analytical ChemistryUniversity of NeuchâtelNeuchâtelSwitzerland
| | - Serge Rudaz
- Institute of Pharmaceutical Sciences of Western SwitzerlandUniversity of GenevaGenevaSwitzerland
- Swiss Center of Applied Human Toxicology (SCAHT)BaselSwitzerland
| |
Collapse
|
3
|
Galmiche M, Strassel O, Monat MA, Meister I, Boccard J, Rudaz S. Extended Steroid Profiling in Human Serum and Plasma With Simultaneous Quantitative Determination Using One-Point Internal Calibration. J Sep Sci 2025; 48:e70147. [PMID: 40263728 DOI: 10.1002/jssc.70147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Revised: 04/04/2025] [Accepted: 04/08/2025] [Indexed: 04/24/2025]
Abstract
Steroids are a major set of endogenous bioactive compounds. Although increasingly popular, their analysis in biofluids by LC-MS is associated with enduring challenges, such as their low endogenous concentrations or the coexistence of numerous isobaric compounds. Their natural presence in biological matrices complicates their absolute quantification in blood, as the obtention of a blank matrix to establish an external calibration curve is impossible. This protocol describes a strategy for developing an LC-MS/MS method for the extended profiling of steroids in serum and plasma, including as much as 171 target compounds, with the additional absolute quantification of four main steroids (cortisol, testosterone, progesterone, and androstenedione). The proposed sample preparation involves protein precipitation in organic solvents and subsequent filtration of the sample on HLB cartridge. The LC method is developed to resolve most isobaric species thanks to a biphenyl stationary phase. MS detection is performed in multiple reaction monitoring mode with post-column addition of ammonium fluoride to enhance sensitivity. A one-point internal calibration strategy is presented for the absolute quantification of endogenous steroids. The application of this method to the NIST Plasma Reference Material (SRM 1950) led to the identification of 69 distinct endogenous steroids, making it the most comprehensive profiling of these compounds in this reference matrix to date. The quantitative performance of the method is assessed with two certified materials and shows satisfactory precision and trueness.
Collapse
Affiliation(s)
- Mathieu Galmiche
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel-Servet 1, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel-Servet 1, Geneva, Switzerland
- Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
| | - Oriane Strassel
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel-Servet 1, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel-Servet 1, Geneva, Switzerland
| | - Marie-Anaïs Monat
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel-Servet 1, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel-Servet 1, Geneva, Switzerland
| | - Isabel Meister
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel-Servet 1, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel-Servet 1, Geneva, Switzerland
- Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
| | - Julien Boccard
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel-Servet 1, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel-Servet 1, Geneva, Switzerland
- Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
| | - Serge Rudaz
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel-Servet 1, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel-Servet 1, Geneva, Switzerland
- Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
| |
Collapse
|
4
|
Dziurkowska E, Guz-Rzeniecka G, Dziurkowski M. Determination of Cortisol Levels in a Small Volume of Saliva of COVID-19-Recovering Patients During Treatment with Psychotropic Drugs. Biomedicines 2025; 13:697. [PMID: 40149673 PMCID: PMC11940299 DOI: 10.3390/biomedicines13030697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Cortisol levels are increased in stressful situations but can also result from a history of COVID-19 infection. Long-term exposure to high cortisol levels has a destructive effect on the CNS (Central Nervous System) and can lead to depression, among other things. The most commonly used psychotropic drugs reduce cortisol concentrations. Methods: The aim of our study was to develop an analytical method to determine the level of the hormone in a small volume of saliva (200 µL) in COVID-19 patients using CNS-active drugs. Solid-phase extraction was used to isolate the analyte, and the determination was performed by liquid chromatography with a diode array detector (LC with DAD). Results: The developed method was validated. Its linearity was determined to be in the range of 4-500 ng/mL (R2 > 0.9986) and the intra- and inter-day precision expressed as coefficient of variation (CV%) did not exceed 12%. The method was then applied to determine cortisol levels in the saliva of post-COVID-19-recovered patients and healthy volunteers. The determined cortisol levels were 12.24 ± 7.33 ng/mL in the recovered patients and 4.11 ± 1.46 ng/mL in the healthy subjects, respectively. A comparison of the results showed that cortisol levels in the recovered patients and healthy volunteers were significantly different statistically. Conclusions: The developed method allowed for the determination of cortisol in a small volume of saliva. Comparison of cortisol concentration in healthy individuals and COVID-19 recoveries indicates that the hormone level in both groups significantly differed statistically, and the psychotropic drugs used did not reduce cortisol concentration in COVID-19 patients. The results obtained indicate that the psychotropic drugs used did not reduce cortisol concentrations in COVID-19 patients.
Collapse
Affiliation(s)
- Ewelina Dziurkowska
- Department of Analytical Chemistry, Medical University of Gdansk, Gen. J. Hallera 107, 80-416 Gdansk, Poland
| | - Grażyna Guz-Rzeniecka
- Hospital for Nervous and Mental Diseases, Skarszewska 7, 83-200 Starogard Gdanski, Poland; (G.G.-R.); (M.D.)
| | - Maciej Dziurkowski
- Hospital for Nervous and Mental Diseases, Skarszewska 7, 83-200 Starogard Gdanski, Poland; (G.G.-R.); (M.D.)
| |
Collapse
|
5
|
Visconti G, de Figueiredo M, Monnier J, Shea J, Rudaz S, Glauser G. Fast neonicotinoid quantification in honey using the one-point internal calibration approach. Food Chem X 2024; 23:101565. [PMID: 39007114 PMCID: PMC11239451 DOI: 10.1016/j.fochx.2024.101565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/31/2024] [Accepted: 06/14/2024] [Indexed: 07/16/2024] Open
Abstract
Neonicotinoids, a highly effective class of insecticides used worldwide, have been identified as a major cause of concern for biodiversity. To assess the ecological and environmental consequences of neonicotinoids' use, reliable analytical methodologies, including calibration approaches, are needed. Here, we compared the performance of internal calibration (IC) using a single concentration of stable isotope-labeled standard (SIL) with classical multipoint external calibration (EC) for the quantification of six neonicotinoids in honey. IC showed acceptable levels of trueness (86.3% - 116.0%) and precision (1.4% - 20.8%), although slight biases were observed at very low concentrations compared to EC. When applied to 32 original honey samples, both approaches showed strong agreement (R2 > 0.998) with proportional biases lower than 5%. These results highlight the possibility of implementing IC to simplify quantification in liquid chromatography-mass spectrometry-based pesticide applications.
Collapse
Affiliation(s)
- Gioele Visconti
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel-Servet 1, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel-Servet 1, Geneva, Switzerland
| | - Miguel de Figueiredo
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel-Servet 1, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel-Servet 1, Geneva, Switzerland
| | - Joanie Monnier
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel-Servet 1, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel-Servet 1, Geneva, Switzerland
- Neuchâtel Platform of Analytical Chemistry (NPAC), University of Neuchâtel, Avenue de Bellevaux 51, 2000 Neuchâtel, Switzerland
| | - Julia Shea
- Neuchâtel Platform of Analytical Chemistry (NPAC), University of Neuchâtel, Avenue de Bellevaux 51, 2000 Neuchâtel, Switzerland
| | - Serge Rudaz
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel-Servet 1, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel-Servet 1, Geneva, Switzerland
| | - Gaetan Glauser
- Neuchâtel Platform of Analytical Chemistry (NPAC), University of Neuchâtel, Avenue de Bellevaux 51, 2000 Neuchâtel, Switzerland
| |
Collapse
|
6
|
Visconti G, de Figueiredo M, Salamin O, Boccard J, Vuilleumier N, Nicoli R, Kuuranne T, Rudaz S. Straightforward quantification of endogenous steroids with liquid chromatography-tandem mass spectrometry: Comparing calibration approaches. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1226:123778. [PMID: 37393882 DOI: 10.1016/j.jchromb.2023.123778] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/23/2023] [Accepted: 05/31/2023] [Indexed: 07/04/2023]
Abstract
Different calibration strategies are used in liquid chromatography hyphenated to mass spectrometry (LC-MS) bioanalysis. Currently, the surrogate matrix and surrogate analyte represent the most widely used approaches to compensate for the lack of analyte-free matrices in endogenous compounds quantification. In this context, there is a growing interest in rationalizing and simplifying quantitative analysis using a one-point concentration level of stable isotope-labeled (SIL) standards as surrogate calibrants. Accordingly, an internal calibration (IC) can be applied when the instrument response is translated into analyte concentration via the analyte-to-SIL ratio performed directly in the study sample. Since SILs are generally used as internal standards to normalize variability between authentic study sample matrix and surrogate matrix used for the calibration, IC can be calculated even if the calibration protocol was achieved for an external calibration (EC). In this study, a complete dataset of a published and fully validated method to quantify an extended steroid profile in serum was recomputed by adapting the role of SIL internal standards as surrogate calibrants. Using the validation samples, the quantitative performances for IC were comparable with the original method, showing acceptable trueness (79%-115%) and precision (0.8%-11.8%) for the 21 detected steroids. The IC methodology was then applied to human serum samples (n = 51) from healthy women and women diagnosed with mild hyperandrogenism, showing high agreement (R2 > 0.98) with the concentrations obtained using the conventional quantification based on EC. For IC, Passing-Bablok regression showed proportional biases between -15.0% and 11.3% for all quantified steroids, with an average difference of -5.8% compared to EC. These results highlight the reliability and the advantages of implementing IC in clinical laboratories routine to simplify quantification in LC-MS bioanalysis, especially when a large panel of analytes is monitored.
Collapse
Affiliation(s)
- Gioele Visconti
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel-Servet 1, Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel-Servet 1, Geneva, Switzerland
| | - Miguel de Figueiredo
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel-Servet 1, Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel-Servet 1, Geneva, Switzerland
| | - Olivier Salamin
- Center of Research and Expertise in Anti-Doping Sciences - REDs, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland; Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne and Geneva, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Julien Boccard
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel-Servet 1, Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel-Servet 1, Geneva, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
| | - Nicolas Vuilleumier
- Department of Genetic and Laboratory Medicine, Geneva University Hospitals (HUG), Geneva, Switzerland
| | - Raul Nicoli
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne and Geneva, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Tiia Kuuranne
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne and Geneva, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Serge Rudaz
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel-Servet 1, Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel-Servet 1, Geneva, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland.
| |
Collapse
|
7
|
Visconti G, Boccard J, Feinberg M, Rudaz S. From fundamentals in calibration to modern methodologies: A tutorial for small molecules quantification in liquid chromatography-mass spectrometry bioanalysis. Anal Chim Acta 2023; 1240:340711. [PMID: 36641149 DOI: 10.1016/j.aca.2022.340711] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022]
Abstract
Over the last two decades, liquid chromatography coupled to mass-spectrometry (LC‒MS) has become the gold standard to perform qualitative and quantitative analyses of small molecules. When quantitative analysis is developed, an analyst usually refers to international guidelines for analytical method validation. In this context, the design of calibration curves plays a key role in providing accurate results. During recent years and along with instrumental advances, strategies to build calibration curves have dramatically evolved, introducing innovative approaches to improve quantitative precision and throughput. For example, when a labeled standard is available to be spiked directly into the study sample, the concentration of the unlabeled analog can be easily determined using the isotopic pattern deconvolution or the internal calibration approach, eliminating the need for multipoint calibration curves. This tutorial aims to synthetize the advances in LC‒MS quantitative analysis for small molecules in complex matrices, going from fundamental aspects in calibration to modern methodologies and applications. Different work schemes for calibration depending on the sample characteristics (analyte and matrix nature) are distinguished and discussed. Finally, this tutorial outlines the importance of having international guidelines for analytical method validation that agree with the advances in calibration strategies and analytical instrumentation.
Collapse
Affiliation(s)
- Gioele Visconti
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel-Servet 1, 1211, Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel-Servet 1, 1211, Geneva, Switzerland
| | - Julien Boccard
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel-Servet 1, 1211, Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel-Servet 1, 1211, Geneva, Switzerland
| | | | - Serge Rudaz
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel-Servet 1, 1211, Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel-Servet 1, 1211, Geneva, Switzerland.
| |
Collapse
|
8
|
Different Types of Glucocorticoids to Evaluate Stress and Welfare in Animals and Humans: General Concepts and Examples of Combined Use. Metabolites 2023; 13:metabo13010106. [PMID: 36677031 PMCID: PMC9865266 DOI: 10.3390/metabo13010106] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/23/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
The main glucocorticoids involved in the stress response are cortisol and cortisone in most mammals and corticosterone in birds and rodents. Therefore, these analytes are currently the biomarkers more frequently used to evaluate the physiological response to a stressful situation. In addition, "total glucocorticoids", which refers to the quantification of various glucocorticoids by immunoassays showing cross-reactivity with different types of glucocorticoids or related metabolites, can be measured. In this review, we describe the characteristics of the main glucocorticoids used to assess stress, as well as the main techniques and samples used for their quantification. In addition, we analyse the studies where at least two of the main glucocorticoids were measured in combination. Overall, this review points out the different behaviours of the main glucocorticoids, depending on the animal species and stressful stimuli, and shows the potential advantages that the measurement of at least two different glucocorticoid types can have for evaluating welfare.
Collapse
|
9
|
Nutritional lipidomics for the characterization of lipids in food. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023. [PMID: 37516469 DOI: 10.1016/bs.afnr.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Lipids represent one out of three major macronutrient classes in the human diet. It is estimated to account for about 15-20% of the total dietary intake. Triacylglycerides comprise the majority of them, estimated 90-95%. Other lipid classes include free fatty acids, phospholipids, cholesterol, and plant sterols as minor components. Various methods are used for the characterization of nutritional lipids, however, lipidomics approaches become increasingly attractive for this purpose due to their wide coverage, comprehensiveness and holistic view on composition. In this chapter, analytical methodologies and workflows utilized for lipidomics profiling of food samples are outlined with focus on mass spectrometry-based assays. The chapter describes common lipid extraction protocols, the distinct instrumental mass-spectrometry based analytical platforms for data acquisition, chromatographic and ion-mobility spectrometry methods for lipid separation, briefly mentions alternative methods such as gas chromatography for fatty acid profiling and mass spectrometry imaging. Critical issues of important steps of lipidomics workflows such as structural annotation and identification, quantification and quality assurance are discussed as well. Applications reported over the period of the last 5years are summarized covering the discovery of new lipids in foodstuff, differential profiling approaches for comparing samples from different origin, species, varieties, cultivars and breeds, and for food processing quality control. Lipidomics as a powerful tool for personalized nutrition and nutritional intervention studies is briefly discussed as well. It is expected that this field is significantly growing in the near future and this chapter gives a short insight into the power of nutritional lipidomics approaches.
Collapse
|
10
|
UHPLC-ESI-MS/MS assay for quantification of endocannabinoids in cerebrospinal fluid using surrogate calibrant and surrogate matrix approaches. J Pharm Biomed Anal 2023; 222:115090. [DOI: 10.1016/j.jpba.2022.115090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/01/2022] [Accepted: 10/02/2022] [Indexed: 11/07/2022]
|