1
|
Wang J, Wang P, Wu Z, Yu T, Abudula A, Sun M, Ma X, Guan G. Mesoporous catalysts for catalytic oxidation of volatile organic compounds: preparations, mechanisms and applications. REV CHEM ENG 2022. [DOI: 10.1515/revce-2021-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Volatile organic compounds (VOCs) are mainly derived from human activities, but they are harmful to the environment and our health. Catalytic oxidation is the most economical and efficient method to convert VOCs into harmless substances of water and carbon dioxide at relatively low temperatures among the existing techniques. Supporting noble metal and/or transition metal oxide catalysts on the porous materials and direct preparation of mesoporous catalysts are two efficient ways to obtain effective catalysts for the catalytic oxidation of VOCs. This review focuses on the preparation methods for noble-metal-based and transition-metal-oxide-based mesoporous catalysts, the reaction mechanisms of the catalytic oxidations of VOCs over them, the catalyst deactivation/regeneration, and the applications of such catalysts for VOCs removal. It is expected to provide guidance for the design, preparation and application of effective mesoporous catalysts with superior activity, high stability and low cost for the VOCs removal at lower temperatures.
Collapse
Affiliation(s)
- Jing Wang
- School of Chemical Engineering , Northwest University, International Science & Technology Cooperation Base of MOST for Clean Utilization of Hydrocarbon Resources; Chemical Engineering Research Center of the Ministry of Education for Advanced Use Technology of Shanbei Energy; Shaanxi Research Center of Engineering Technology for Clean Coal Conversion; and Collaborative Innovation Center for Development of Energy and Chemical Industry in Northern Shaanxi , Xi’an 710069 , Shaanxi , China
| | - Peifen Wang
- Graduate School of Science and Technology , Hirosaki University , 1-Bunkyocho , Hirosaki 036-8560 , Aomori , Japan
| | - Zhijun Wu
- Graduate School of Science and Technology , Hirosaki University , 1-Bunkyocho , Hirosaki 036-8560 , Aomori , Japan
| | - Tao Yu
- Graduate School of Science and Technology , Hirosaki University , 1-Bunkyocho , Hirosaki 036-8560 , Aomori , Japan
| | - Abuliti Abudula
- Graduate School of Science and Technology , Hirosaki University , 1-Bunkyocho , Hirosaki 036-8560 , Aomori , Japan
| | - Ming Sun
- School of Chemical Engineering , Northwest University, International Science & Technology Cooperation Base of MOST for Clean Utilization of Hydrocarbon Resources; Chemical Engineering Research Center of the Ministry of Education for Advanced Use Technology of Shanbei Energy; Shaanxi Research Center of Engineering Technology for Clean Coal Conversion; and Collaborative Innovation Center for Development of Energy and Chemical Industry in Northern Shaanxi , Xi’an 710069 , Shaanxi , China
| | - Xiaoxun Ma
- School of Chemical Engineering , Northwest University, International Science & Technology Cooperation Base of MOST for Clean Utilization of Hydrocarbon Resources; Chemical Engineering Research Center of the Ministry of Education for Advanced Use Technology of Shanbei Energy; Shaanxi Research Center of Engineering Technology for Clean Coal Conversion; and Collaborative Innovation Center for Development of Energy and Chemical Industry in Northern Shaanxi , Xi’an 710069 , Shaanxi , China
| | - Guoqing Guan
- Graduate School of Science and Technology , Hirosaki University , 1-Bunkyocho , Hirosaki 036-8560 , Aomori , Japan
- Energy Conversion Engineering Laboratory , Institute of Regional Innovation (IRI), Hirosaki University , 2-1-3 Matsubara , Aomori 030-0813 , Japan
| |
Collapse
|
2
|
Kim JA, Kim JC. Vesicles Comprising Dimethylaminopropyl Octadecanamide, Stearic Acid, and Carboxyhexadecyl Disulfide and Their Release Property under Reducing Condition. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-019-0456-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
3
|
Wang M, Kim JC. Preparation of vesicles composed of 2-(hexadecyloxy) cinnamic acid and N-[3-(dimethylamino) propyl]-octadecanamide and their photo- and pH-responsive release property. Colloid Polym Sci 2013. [DOI: 10.1007/s00396-013-3140-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
4
|
Cho JS, Seo YC, Yim TB, Lee HY. Effect of Nanoencapsulated Vitamin B1 Derivative on Inhibition of Both Mycelial Growth and Spore Germination of Fusarium oxysporum f. sp. raphani. Int J Mol Sci 2013; 14:4283-97. [PMID: 23429270 PMCID: PMC3588098 DOI: 10.3390/ijms14024283] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 01/23/2013] [Accepted: 01/29/2013] [Indexed: 11/16/2022] Open
Abstract
Nanoencapsulation of thiamine dilauryl sulfate (TDS), a vitamin B1 derivative, was proved to effectively inhibit the spore germination of Fusarium oxysporum f. sp. raphani (F. oxysporum), as well as mycelial growth. The average diameter of nanoparticles was measured as 136 nm by being encapsulated with an edible encapsulant, lecithin, whose encapsulation efficiency was about 55% in containing 200 ppm of TDS concentration: the 100 ppm TDS nanoparticle solution showed a mycelial growth inhibition rate of 59%. These results were about similar or even better than the cases of treating 100 ppm of dazomet, a positive antifungal control (64%). Moreover, kinetic analysis of inhibiting spore germination were estimated as 6.6% reduction of spore germination rates after 24 h treatment, which were 3.3% similar to the case of treating 100 ppm of a positive control (dazomet) for the same treatment time. It was also found that TDS itself could work as an antifungal agent by inhibiting both mycelial growth and spore germination, even though its efficacy was lower than those of nanoparticles. Nanoparticles especially played a more efficient role in limiting the spore germination, due to their easy penetration into hard cell membranes and long resident time on the surface of the spore shell walls. In this work, it was first demonstrated that the nanoparticle of TDS not a harmful chemical can control the growth of F. oxysporum by using a lower dosage than commercial herbicides, as well as the inhibiting mechanism of the TDS. However, field trials of the TDS nanoparticles encapsulated with lecithin should be further studied to be effectively used for field applications.
Collapse
Affiliation(s)
- Jeong Sub Cho
- DooSan EcoBizNet, Chuncheon 200-161, Korea; E-Mails: (J.S.C.); (T.B.Y.)
| | - Yong Chang Seo
- Department of Medical Biomaterials Engineering, Kangwon National University, Chuncheon 200-701, Korea; E-Mail:
| | - Tae Bin Yim
- DooSan EcoBizNet, Chuncheon 200-161, Korea; E-Mails: (J.S.C.); (T.B.Y.)
| | - Hyeon Yong Lee
- Department of Teaics, Seowon University, Cheongju, Chungbuk 361-742, Korea
| |
Collapse
|
5
|
Wang MH, Kim JC. Vesicles composed of fatty acid and N-[3-(dimethylamino)propyl]-octadecanamide: effect of fatty acid chain length on physicochemical properties of vesicles. Drug Dev Ind Pharm 2013; 40:318-24. [DOI: 10.3109/03639045.2012.760578] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
6
|
Akter N, Radiman S, Mohamed F, Rahman IA, Reza MIH. Ternary phase behaviour and vesicle formation of a sodium N-lauroylsarcosinate hydrate/1-decanol/water system. Sci Rep 2011; 1:71. [PMID: 22355590 PMCID: PMC3216558 DOI: 10.1038/srep00071] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 08/02/2011] [Indexed: 11/23/2022] Open
Abstract
The phase behaviour of a system composed of amino acid-based surfactant (sodium N-lauroylsarcosinate hydrate), 1-decanol and deionised water was investigated for vesicle formation. Changing the molar ratio of the amphiphiles, two important aggregate structures were observed in the aqueous corner of the phase diagram. Two different sizes of microemulsions were found at two amphiphile-water boundaries. A stable single vesicle lobe was found for 1∶2 molar ratios in 92 wt% water with vesicles approximately 100 nm in size and with high zeta potential value. Structural variation arises due to the reduction of electrostatic repulsions among the ionic headgroups of the surfactants and the hydration forces due to adsorbed water onto monolayer's. The balance of these two forces determines the aggregate structures. Analysis was followed by the molecular geometrical structure. These findings may have implications for the development of drug delivery systems for cancer treatments, as well as cosmetic and food formulations.
Collapse
Affiliation(s)
- Nasima Akter
- School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia.
| | | | | | | | | |
Collapse
|
7
|
Kwon TK, Kim JC. pH-Dependent Release from Monoolein Cubic Phase Containing Hydrophobically Modified Chitosan. J DISPER SCI TECHNOL 2011. [DOI: 10.1080/01932691003756761] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Topological Study of the Behavior of Inorganic Fine Powers and a Nanovesicle Hybridized Coating. B KOREAN CHEM SOC 2009. [DOI: 10.5012/bkcs.2009.30.2.343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|