1
|
Karimi-Maleh H, Darabi R, Karimi F, Karaman C, Shahidi SA, Zare N, Baghayeri M, Fu L, Rostamnia S, Rouhi J, Rajendran S. State-of-art advances on removal, degradation and electrochemical monitoring of 4-aminophenol pollutants in real samples: A review. ENVIRONMENTAL RESEARCH 2023; 222:115338. [PMID: 36702186 DOI: 10.1016/j.envres.2023.115338] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/26/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
p_Aminophenol, namely 4-aminophenol (4-AP), is an aromatic compound including hydroxyl and amino groups contiguous together on the benzene ring, which are suitable chemically reactive, amphoteric, and alleviating agents in nature. Amino phenols are appropriate precursors for synthesizing oxazoles and oxazines. However, since the toxicity of aniline and phenol can harm human and herbal organs, it is essential to improve a reliable technique for the determination of even a trace amount of amino phenols, as well as elimination or (bio)degradation/photodegradation of it to protect both the environment and people's health. For this purpose, various analytical methods have been suggested up till now, including spectrophotometry, liquid chromatography, spectrofluorometric and capillary electrophoresis, etc. However, some drawbacks such as the requirement of complex instruments, high costs, not being portable, slow response time, low sensitivity, etc. prevent them to be employed in a wide range and swift in-situ applications. In this regard, besides the efforts such as (bio)degradation/photodegradation or removal of 4-AP pollutants from real samples, electroanalytical techniques have become a promising alternative for monitoring them with high sensitivity. In this review, it was aimed to emphasize and summarize the recent advances, challenges, and opportunities for removal, degradation, and electrochemical sensing 4-AP in real samples. Electroanalytical monitoring of amino phenols was reviewed in detail and explored the various types of electrochemical sensors applied for detecting and monitoring in real samples. Furthermore, the various technique of removal and degradation of 4-AP in industrial and urban wastes were also deliberated. Moreover, deep criticism of multifunctional nanomaterials to be utilized as a catalyst, adsorbent/biosorbent, and electroactive material for the fabrication of electrochemical sensors was covered along with their unique properties. Future perspectives and conclusions were also criticized to pave the way for further studies in the field of application of up-and-coming nanostructures in environmental applications.
Collapse
Affiliation(s)
- Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - Rozhin Darabi
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China
| | - Fatemeh Karimi
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran.
| | - Ceren Karaman
- Department of Electricity and Energy, Akdeniz University, Antalya, 07070, Turkey; School of Engineering, Lebanese American University, Byblos, Lebanon.
| | - Seyed Ahmad Shahidi
- Department of Food Science and Technology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Najmeh Zare
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran
| | - Mehdi Baghayeri
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, PO. Box 397, Sabzevar, Iran
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, PR China
| | - Sadegh Rostamnia
- Organic and Nano Group (ONG), Department of Chemistry, Iran University of Science and Technology (IUST), PO Box 16846-13114, Tehran, Iran
| | - Jalal Rouhi
- Faculty of Physics, University of Tabriz, Tabriz, 51566, Iran
| | - Saravanan Rajendran
- Faculty of Engineering, Department of Mechanical Engineering, University of Tarapacá, Avda, General Velasquez, 1775, Arica, Chile
| |
Collapse
|
3
|
Kinetic Analysis of 4-Nitrophenol Reduction by "Water-Soluble" Palladium Nanoparticles. NANOMATERIALS 2020; 10:nano10061169. [PMID: 32549394 PMCID: PMC7353196 DOI: 10.3390/nano10061169] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 11/21/2022]
Abstract
The most important model catalytic reaction to test the catalytic activity of metal nanoparticles is the reduction of 4-nitrophenol to 4-aminophenol by sodium borohydride as it can be precisely monitored by UV–vis spectroscopy with high accuracy. This work presents the catalytic reduction of 4-nitrophenol (4-Nip) to 4-aminophenol (4-Amp) in the presence of Pd nanoparticles and sodium borohydride as reductants in water. We first evaluate the kinetics using classical pseudo first-order kinetics. We report the effects of different initial 4-Nip and NaBH4 concentrations, reaction temperatures, and mass of Pd nanoparticles used for catalytic reduction. The thermodynamic parameters (activation energy, enthalpy, and entropy) were also determined. Results show that the kinetics are highly dependent on the reactant ratio and that pseudo first-order simplification is not always fit to describe the kinetics of the reaction. Assuming that all steps of this reaction proceed only on the surface of Pd nanoparticles, we applied a Langmuir−Hinshelwood model to describe the kinetics of the reaction. Experimental data of the decay rate of 4-nitrophenol were successfully fitted to the theoretical values obtained from the Langmuir–Hinshelwood model and all thermodynamic parameters, the true rate constant k, as well as the adsorption constants of 4-Nip, and BH4− (K4-Nip and KBH4−) were determined for each temperature.
Collapse
|
4
|
Zhang N, Bu J, Meng Y, Wan J, Yuan L, Peng X. Degradation of p‐aminophenol wastewater using Ti‐Si‐Sn‐Sb/GAC particle electrodes in a three‐dimensional electrochemical oxidation reactor. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5612] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Na Zhang
- College of Chemistry and Chemical Engineering of Hunan Normal University Changsha 410081 China
| | - Jiaqi Bu
- College of Chemistry and Chemical Engineering of Hunan Normal University Changsha 410081 China
| | - Yong Meng
- College of Chemistry and Chemical Engineering of Hunan Normal University Changsha 410081 China
- National & Local Joint Engineering Laboratory for New Petro‐chemical Materials and Fine Utilization of Resources Changsha 410081 China
- Key Laboratory of Sustainable Resources Processing and Advanced Materials of Hunan Province College Changsha 410081 China
- Research Center of Resource Recycling Complex TechnologyHunan Normal University Changsha 410081 China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Hunan Normal University), Ministry of Education Changsha 410081 China
| | - Jia Wan
- College of Chemistry and Chemical Engineering of Hunan Normal University Changsha 410081 China
| | - Lu Yuan
- College of Chemistry and Chemical Engineering of Hunan Normal University Changsha 410081 China
- National & Local Joint Engineering Laboratory for New Petro‐chemical Materials and Fine Utilization of Resources Changsha 410081 China
- Key Laboratory of Sustainable Resources Processing and Advanced Materials of Hunan Province College Changsha 410081 China
- Research Center of Resource Recycling Complex TechnologyHunan Normal University Changsha 410081 China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Hunan Normal University), Ministry of Education Changsha 410081 China
| | - Xin Peng
- College of Chemistry and Chemical Engineering of Hunan Normal University Changsha 410081 China
- National & Local Joint Engineering Laboratory for New Petro‐chemical Materials and Fine Utilization of Resources Changsha 410081 China
- Key Laboratory of Sustainable Resources Processing and Advanced Materials of Hunan Province College Changsha 410081 China
- Research Center of Resource Recycling Complex TechnologyHunan Normal University Changsha 410081 China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Hunan Normal University), Ministry of Education Changsha 410081 China
| |
Collapse
|
5
|
Yada S, Yoshimura T. Structure and Catalytic Activities of Gold Nanoparticles Protected by Homogeneous Polyoxyethylene Alkyl Ether Type Nonionic Surfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:5241-5249. [PMID: 30883135 DOI: 10.1021/acs.langmuir.9b00142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Gold nanoparticles were prepared in aqueous solutions containing four homogeneous polyoxyethylene (EO) alkyl ether type nonionic surfactants: octaoxyethylene dodecyl ether (C12EO8), methoxyoctaoxyethylene dodecyl ether (C12EO8OMe), ethoxyoctaoxyethylene dodecyl ether (C12EO8OEt), and trioxypropylene-octaoxyethylene dodecyl ether (C12EO8PO3). The sizes of obtained gold nanoparticles were almost independent of the terminal group in the EO surfactants; and the average sizes of nanoparticles prepared by surfactants with hydroxy, methoxy, ethoxy, and trioxypropylene terminal groups at [surfactant]:[Au3+] = 1:1 were 5.1 ± 1.2, 8.1 ± 1.4, 6.4 ± 2.1, and 8.6 ± 2.9 nm, respectively. The gold nanoparticles easily aggregated together according to the increasing hydrophobicity of hydroxy < methoxy ethoxy < trioxypropylene terminal groups. Highly stable dispersed nanoparticles were observed with hydroxy group in the EO terminal group. On the other hand, introducing hydrophobic moiety to the hydroxy group resulted in aggregated nanoparticles because of the interaction between the hydrophobic groups of a protective agent for the gold nanoparticles. For the reduction reaction of p-nitrophenol and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging reaction, catalytic activities of the prepared gold nanoparticles decreased by the introduction of methoxy, ethoxy, or trioxypropylene to the hydroxy group of the EO type surfactant. Thus, a significant correlation was observed between the structure of gold nanoparticles and their catalytic activities.
Collapse
Affiliation(s)
- Shiho Yada
- Department of Chemistry, Faculty of Science , Nara Women's University , Kitauoyanishi-machi , Nara 630-8506 , Japan
| | - Tomokazu Yoshimura
- Department of Chemistry, Faculty of Science , Nara Women's University , Kitauoyanishi-machi , Nara 630-8506 , Japan
| |
Collapse
|
8
|
Wunder S, Lu Y, Albrecht M, Ballauff M. Catalytic Activity of Faceted Gold Nanoparticles Studied by a Model Reaction: Evidence for Substrate-Induced Surface Restructuring. ACS Catal 2011. [DOI: 10.1021/cs200208a] [Citation(s) in RCA: 443] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Stefanie Wunder
- Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany and Institute of Physics, Humboldt-University Berlin, Germany
| | - Yan Lu
- Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany and Institute of Physics, Humboldt-University Berlin, Germany
| | - Martin Albrecht
- Leibniz-Institut für Kristallzüchtung (IKZ), Max-Born-Strasse 2, 12489 Berlin, Germany
| | - Matthias Ballauff
- Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany and Institute of Physics, Humboldt-University Berlin, Germany
| |
Collapse
|
10
|
Loo YM, Lim PE, Seng CE. Treatment of p-nitrophenol in an adsorbent-supplemented sequencing batch reactor. ENVIRONMENTAL TECHNOLOGY 2010; 31:479-487. [PMID: 20480823 DOI: 10.1080/09593330903514482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The objective of this research was to evaluate the treatment ofp-nitrophenol (PNP) as a sole organic carbon source using a sequencing batch reactor (SBR) with the addition of adsorbent. Two types of adsorbents, namely powdered activated carbon (PAC) and pyrolysed rice husk (PRH) were used in this study. Two identical SBRs, each with a working volume of 10 L, were operated with fill, react, settle, draw and idle periods in the ratio of 2:8:1:0.75:0.25 for a cycle time of 12 h. The results showed that, without the addition of adsorbent, increasing the influent PNP concentration to 200 mg/L resulted in the deterioration of chemical oxygen demand (COD) removal efficiency and PNP removal efficiency in the SBRs. Improvement in the performance of the SBR was observed with the addition of PAC. When the dosage of 1.0 g PAC/cycle was applied, COD removal of 95% and almost complete removal of PNP were achieved at the influent PNP concentration of 300 mg/L. The kinetic study showed that the rates of COD and PNP removal can be described by the first-order kinetics. The enhancement of performance in the PAC-supplemented SBR was postulated to be due to the initial adsorption of PNP by the freshly added and the bioregenerated PAC, thus reducing the inhibition on the microorganisms. The PRH was found to be ineffective because of its relatively low adsorption capacity for PNP, compared with that of PAC.
Collapse
Affiliation(s)
- Y M Loo
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | | | | |
Collapse
|
12
|
Goh CP, Seng CE, Sujari ANA, Lim PE. Performance of sequencing batch biofilm and sequencing batch reactors in simultaneous p-nitrophenol and nitrogen removal. ENVIRONMENTAL TECHNOLOGY 2009; 30:725-736. [PMID: 19705610 DOI: 10.1080/09593330902911689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The objective of this study is to evaluate the performance of sequencing batch biofilm reactors (SBBRs) and sequencing batch reactor (SBR) in the simultaneous removal of p-nitrophenol (PNP) and ammoniacal nitrogen. SBBRs involved the use of polyurethane sponge cubes and polyethylene rings, respectively, as carrier materials. The results demonstrate that complete removal of PNP was achievable for the SBR and SBBRs up to the PNP concentration of 350 mg/l (loading rate of 0.368 kg/m3 d). At this loading rate, the average ammoniacal nitrogen removal efficiency for the SBR and SBBR (with polyethylene rings) was reduced to 86% and 96%, respectively. However, the SBBR (with polyurethane sponge cubes) still managed to achieve an almost 100% ammoniacal nitrogen removal. Based on the results, the performance of the SBBRs was better than that of SBR in PNP and ammoniacal nitrogen removal. The results of the gas chromatography mass spectroscopy, high-performance liquid chromatography and ultraviolet-visible analyses indicate that complete mineralization of PNP was achieved in all of the reactors.
Collapse
Affiliation(s)
- Chin-Ping Goh
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | | | | | | |
Collapse
|